The emerging wearable electronics and e-textiles have motivated tremendous interests in textile energy storage microdevices. Among them, fiber-shaped capacitors (FSCs) offer unique properties because of their 1D configuration and reliable energy storage. In recent years, many works focused on the development of 1D fibrous-shaped electrodes usually involving complex material synthesis and techniques. Herein, an easy procedure for the preparation of composite fibers made by PEDOT:PSS infiltration in gel-state Kevlar nanofiber (KNF) wires is proposed. The PEDOT:PSS@KNF 1D electrodes are mechanically robust, conductive, and flexible. The symmetric FSCs integrated in textile show remarkable capacitance retention under deformation, average capacitance of 1.1 mF, volumetric energy density of 71 mWh cm(-3), and ability to power on a blue light-emitting diode.
PEDOTS:PSS@KNF Wire-Shaped Electrodes for Textile Symmetrical Capacitor
Gibertini, E;Magagnin, L
2022-01-01
Abstract
The emerging wearable electronics and e-textiles have motivated tremendous interests in textile energy storage microdevices. Among them, fiber-shaped capacitors (FSCs) offer unique properties because of their 1D configuration and reliable energy storage. In recent years, many works focused on the development of 1D fibrous-shaped electrodes usually involving complex material synthesis and techniques. Herein, an easy procedure for the preparation of composite fibers made by PEDOT:PSS infiltration in gel-state Kevlar nanofiber (KNF) wires is proposed. The PEDOT:PSS@KNF 1D electrodes are mechanically robust, conductive, and flexible. The symmetric FSCs integrated in textile show remarkable capacitance retention under deformation, average capacitance of 1.1 mF, volumetric energy density of 71 mWh cm(-3), and ability to power on a blue light-emitting diode.File | Dimensione | Formato | |
---|---|---|---|
Adv Materials Inter - 2022 - Gibertini - PEDOTS PSS KNF Wire‐Shaped Electrodes for Textile Symmetrical Capacitor.pdf
accesso aperto
Descrizione: Articolo
:
Publisher’s version
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.