In statistical process control/monitoring (SPC/M), memory-based control charts aim to detect small/medium persistent parameter shifts. When a phase I calibration is not feasible, self-starting methods have been proposed, with the predictive ratio cusum (PRC) being one of them. To apply such methods in practice, one needs to derive the decision limit threshold that will guarantee a preset false alarm tolerance, a very difficult task when the process parameters are unknown and their estimate is sequentially updated. Utilizing the Bayesian framework in PRC, we will provide the theoretic framework that will allow to derive a decision-making threshold, based on false alarm tolerance, which along with the PRC closed-form monitoring scheme will permit its straightforward application in real-life practice. An enhancement of PRC is proposed, and a simulation study evaluates its robustness against competitors for various model type misspecifications. Finally, three real data sets (normal, Poisson, and binomial) illustrate its implementation in practice. Technical details, algorithms, and R-codes reproducing the illustrations are provided as supplementary material.

Design and properties of the predictive ratio cusum (PRC) control charts

Tsiamyrtzis P.
2022-01-01

Abstract

In statistical process control/monitoring (SPC/M), memory-based control charts aim to detect small/medium persistent parameter shifts. When a phase I calibration is not feasible, self-starting methods have been proposed, with the predictive ratio cusum (PRC) being one of them. To apply such methods in practice, one needs to derive the decision limit threshold that will guarantee a preset false alarm tolerance, a very difficult task when the process parameters are unknown and their estimate is sequentially updated. Utilizing the Bayesian framework in PRC, we will provide the theoretic framework that will allow to derive a decision-making threshold, based on false alarm tolerance, which along with the PRC closed-form monitoring scheme will permit its straightforward application in real-life practice. An enhancement of PRC is proposed, and a simulation study evaluates its robustness against competitors for various model type misspecifications. Finally, three real data sets (normal, Poisson, and binomial) illustrate its implementation in practice. Technical details, algorithms, and R-codes reproducing the illustrations are provided as supplementary material.
2022
decision threshold, phase Ianalysis, regular exponentialfamily, self-starting, statistical process controland monitoring
File in questo prodotto:
File Dimensione Formato  
Design and properties of the predictive ratio cusum (PRC) control charts.pdf

accesso aperto

: Publisher’s version
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1229844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact