Background and objectives: Parameter estimation and uncertainty quantification are crucial in computational cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Many model parameters regarding cardiac electromechanics and cardiovascular hemodynamics need to be robustly fitted by starting from a few, possibly non-invasive, noisy observations. Moreover, short execution times and a small amount of computational resources are required for the effective clinical translation. Methods: In the framework of Bayesian statistics, we combine Maximum a Posteriori estimation and Hamiltonian Monte Carlo to find an approximation of model parameters and their posterior distributions. Fast simulations and minimal memory requirements are achieved by using an accurate and geometry- specific Artificial Neural Network surrogate model for the cardiac function, matrix–free methods, automatic differentiation and automatic vectorization. Furthermore, we account for the surrogate modeling error and measurement error. Results: We perform three different in silico test cases, ranging from the ventricular function to the entire cardiocirculatory system, involving whole-heart mechanics, arterial and venous hemodynamics. By employing a single central processing unit on a standard laptop, we attain highly accurate estimations for all model parameters in short computational times. Furthermore, we obtain posterior distributions that contain the true values inside the 90% credibility regions. Conclusions: Many model parameters regarding the entire cardiovascular system can be fastly and robustly identified with minimal hardware requirements. This can be achieved when a small amount of non-invasive data is available and when high levels of signal-to-noise ratio are present in the quantities of interest. With these features, our approach meets the requirements for clinical exploitation, while being compliant with Green Computing practices.

Fast and robust parameter estimation with uncertainty quantification for the cardiac function

Salvador, Matteo;Regazzoni, Francesco;Dede’, Luca;Quarteroni, Alfio
2023-01-01

Abstract

Background and objectives: Parameter estimation and uncertainty quantification are crucial in computational cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Many model parameters regarding cardiac electromechanics and cardiovascular hemodynamics need to be robustly fitted by starting from a few, possibly non-invasive, noisy observations. Moreover, short execution times and a small amount of computational resources are required for the effective clinical translation. Methods: In the framework of Bayesian statistics, we combine Maximum a Posteriori estimation and Hamiltonian Monte Carlo to find an approximation of model parameters and their posterior distributions. Fast simulations and minimal memory requirements are achieved by using an accurate and geometry- specific Artificial Neural Network surrogate model for the cardiac function, matrix–free methods, automatic differentiation and automatic vectorization. Furthermore, we account for the surrogate modeling error and measurement error. Results: We perform three different in silico test cases, ranging from the ventricular function to the entire cardiocirculatory system, involving whole-heart mechanics, arterial and venous hemodynamics. By employing a single central processing unit on a standard laptop, we attain highly accurate estimations for all model parameters in short computational times. Furthermore, we obtain posterior distributions that contain the true values inside the 90% credibility regions. Conclusions: Many model parameters regarding the entire cardiovascular system can be fastly and robustly identified with minimal hardware requirements. This can be achieved when a small amount of non-invasive data is available and when high levels of signal-to-noise ratio are present in the quantities of interest. With these features, our approach meets the requirements for clinical exploitation, while being compliant with Green Computing practices.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1229643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact