Rainfall event separation is mainly based on the selection of the minimum inter-event time (MIET). The traditional approach to determining a suitable MIET for estimating the probability den sity functions is often using the frequency histograms. However, this approach cannot avoid arbi trariness and subjectivity in selecting the histogram parameters. To overcome the above limitations, this study proposes a kernel density estimation (KDE) approach for rainfall event separation and characterization at any specific site where the exponential distributions are suitable for characterizing the rainfall event statistics. Using the standardized procedure provided taking into account the Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan of China, applying the proposed approach are selected for demonstration purposes. The results show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach can facilitate the rainfall statistical representation of the analytical probabilistic models of urban drainage/stormwater control facilities

KDE-Based Rainfall Event Separation and Characterization

Anita Raimondi;
2023-01-01

Abstract

Rainfall event separation is mainly based on the selection of the minimum inter-event time (MIET). The traditional approach to determining a suitable MIET for estimating the probability den sity functions is often using the frequency histograms. However, this approach cannot avoid arbi trariness and subjectivity in selecting the histogram parameters. To overcome the above limitations, this study proposes a kernel density estimation (KDE) approach for rainfall event separation and characterization at any specific site where the exponential distributions are suitable for characterizing the rainfall event statistics. Using the standardized procedure provided taking into account the Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan of China, applying the proposed approach are selected for demonstration purposes. The results show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach can facilitate the rainfall statistical representation of the analytical probabilistic models of urban drainage/stormwater control facilities
2023
rainfall event separation; minimum inter-event time; exponential distribution; rainfall characteristics; kernel density estimation
File in questo prodotto:
File Dimensione Formato  
Water_Cao-Diao_Wang-Liu-Raimondi-Wang.pdf

accesso aperto

: Publisher’s version
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1228769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 8
social impact