In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of similar to 65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 x 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.
Cardanol-Derived Epoxy Resins as Biobased Gel Polymer Electrolytes for Potassium-Ion Conduction
Manarin, Eleonora;Corsini, Francesca;Turri, Stefano;Griffini, Gianmarco
2022-01-01
Abstract
In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of similar to 65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 x 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.File | Dimensione | Formato | |
---|---|---|---|
Manarin et al_Cardanol-based GPEs for K conduction_ACS Appl Polym Mater_4_2022_3855.pdf
Accesso riservato
Descrizione: Manuscript
:
Publisher’s version
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.