Finite Element Modeling (FEM) and Operational Modal Analysis (OMA) is herein presented for the historical masonry Kütahya Kurşunlu Mosque within the framework of its seismic performance assessment. The historical structure is located in Turkey which has a high-level seismic activity. A FEM strategy was adopted to construct a numerical model of the structure considering a simplified three-dimensional geometry and a macro-modeling approach for the masonry. A representative numerical model of the existing structure was calibrated and improved according to the OMA results obtained from ambient vibration measurements, performed in-situ. The ambient vibration measurements were operated by using two triaxial accelerometers, that one of the accelerometers was regulated as a reference station whereas the other accelerometer was relocated to seven different points on the top of the walls. Identification of the experimental modal parameters was achieved by performing two different signal processing methodologies, namely the Enhanced Frequency Domain Decomposition (EFDD) and the Stochastic Subspace Identification - Unweighted Principal Components (SSI-UPC). Results obtained from both methods were compared in terms of the Modal Assurance Criterion (MAC) which considers the mode shapes derived in a specific range of frequency. The SSI-UPC method was employed in achieving the experimental modal response of the structure and the results were compared with the eigenvalue analysis results of the preliminary numerical model. A calibration process was carried out in terms of minimizing the difference between the experimental and numerical modal response by a trial and error approach and an average error of 4.9% was calculated for the modal frequencies of the first four global modes of vibration.

Finite element modeling and operational modal analysis of a historical masonry mosque

Silva L. C.;
2019-01-01

Abstract

Finite Element Modeling (FEM) and Operational Modal Analysis (OMA) is herein presented for the historical masonry Kütahya Kurşunlu Mosque within the framework of its seismic performance assessment. The historical structure is located in Turkey which has a high-level seismic activity. A FEM strategy was adopted to construct a numerical model of the structure considering a simplified three-dimensional geometry and a macro-modeling approach for the masonry. A representative numerical model of the existing structure was calibrated and improved according to the OMA results obtained from ambient vibration measurements, performed in-situ. The ambient vibration measurements were operated by using two triaxial accelerometers, that one of the accelerometers was regulated as a reference station whereas the other accelerometer was relocated to seven different points on the top of the walls. Identification of the experimental modal parameters was achieved by performing two different signal processing methodologies, namely the Enhanced Frequency Domain Decomposition (EFDD) and the Stochastic Subspace Identification - Unweighted Principal Components (SSI-UPC). Results obtained from both methods were compared in terms of the Modal Assurance Criterion (MAC) which considers the mode shapes derived in a specific range of frequency. The SSI-UPC method was employed in achieving the experimental modal response of the structure and the results were compared with the eigenvalue analysis results of the preliminary numerical model. A calibration process was carried out in terms of minimizing the difference between the experimental and numerical modal response by a trial and error approach and an average error of 4.9% was calculated for the modal frequencies of the first four global modes of vibration.
2019
COMPDYN Proceedings
978-618-82844-5-6
Eigenvalue Analysis
Finite Element Modeling
Historical Masonry Structure
Model Calibration
Operational Modal Analysis
File in questo prodotto:
File Dimensione Formato  
COMPDYN_2019_2.pdf

accesso aperto

: Publisher’s version
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1228243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact