The Fines2EAF project aims to increase the value of Electric Arc Furnace steelmaking residues by their internal recycling and reuse in form of cement-free briquettes. The project sustainability for a profitable fines' recirculation pass through the conservation of steel and slag quality in terms of chemistry, physics and eco friendliness. To do this, industrial trials have been conducted by the charging of self-reducing and slag-former briquettes made by primary and secondary fines materials. Several slag samples supplied from three different European EAF steel shops have been analysed. The specimens have been characterized by XRF, XRD and SEM to thoroughly define their crystallography, morphology and microstructure. The comparison with the corresponding reference samples (i.e., slag produced without the fines recirculation) also allowed to highlight the differences present. Leaching tests have been conducted on reference and briquette- added slag according to EN 12457-4 standard to assess the compliant with the local environmental regulation. The obtained results highlighted that the slag obtained using cement-free briquettes made by steelmaking fines exhibits crystallographic and morphological properties very similar to the reference samples, with limited differences attributed to slag and scrap feedstock intrinsic heterogeneity. No relevant increase in the leachate concentration could be detected when compared to reference samples and the influence of raw-material fines recirculation into the EAF could be considered at worst negligible, if not positive for some elements like Ba ( - 22.86%), V ( - 13.19%) and W ( - 14.83%). Considering all the analyses performed, no adverse effect on slag quality could be detected.

Influence of the Recirculation of Various by-products Generated through Electric Arc Furnace Route on EAF Slag Quality

Mombelli D.;Mapelli C.;
2022-01-01

Abstract

The Fines2EAF project aims to increase the value of Electric Arc Furnace steelmaking residues by their internal recycling and reuse in form of cement-free briquettes. The project sustainability for a profitable fines' recirculation pass through the conservation of steel and slag quality in terms of chemistry, physics and eco friendliness. To do this, industrial trials have been conducted by the charging of self-reducing and slag-former briquettes made by primary and secondary fines materials. Several slag samples supplied from three different European EAF steel shops have been analysed. The specimens have been characterized by XRF, XRD and SEM to thoroughly define their crystallography, morphology and microstructure. The comparison with the corresponding reference samples (i.e., slag produced without the fines recirculation) also allowed to highlight the differences present. Leaching tests have been conducted on reference and briquette- added slag according to EN 12457-4 standard to assess the compliant with the local environmental regulation. The obtained results highlighted that the slag obtained using cement-free briquettes made by steelmaking fines exhibits crystallographic and morphological properties very similar to the reference samples, with limited differences attributed to slag and scrap feedstock intrinsic heterogeneity. No relevant increase in the leachate concentration could be detected when compared to reference samples and the influence of raw-material fines recirculation into the EAF could be considered at worst negligible, if not positive for some elements like Ba ( - 22.86%), V ( - 13.19%) and W ( - 14.83%). Considering all the analyses performed, no adverse effect on slag quality could be detected.
2022
cement-free briquettes
EAF slag
leaching behaviour
LF-slag
recycling
side-stream materials
spent refractories
File in questo prodotto:
File Dimensione Formato  
Fines2EAF-slag-ISIJ.pdf

accesso aperto

Descrizione: Fines2EAF-slag-ISIJ
: Publisher’s version
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1227862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact