: This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie.

Impedance-based Rapid Diagnostic Tool for Single Malaria Parasite Detection

Giacometti, Marco;Pravettoni, Tommaso;Barsotti, Jonathan;Milesi, Francesca;de Oliveira, Figares Cainã;Maspero, Federico;Coppadoro, Lorenzo P;Fiore, Gianfranco B;Bertacco, Riccardo;Ferrari, Giorgio
2022-01-01

Abstract

: This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie.
File in questo prodotto:
File Dimensione Formato  
final_version.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1227509
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact