In this work, we apply Machine Learning techniques to Hyper-Spectral Images acquired by a Short Wave Infra-Red (SWIR) Camera, to classify the materials composing the Solid Recovered Fuel (SRF). This classification, enabled by data pre-processing techniques, is used to estimate the Lower Heat Value (LHV) of SRF samples, building on models of the literature. The accurate and timely estimates of SRF LHVs yield significant benefits to SRF consumers.
Estimation of the Lower Heating Value of Solid Recovered Fuel Based on Swir Hyper-Spectral Images and Machine Learning
E. Zio;
2022-01-01
Abstract
In this work, we apply Machine Learning techniques to Hyper-Spectral Images acquired by a Short Wave Infra-Red (SWIR) Camera, to classify the materials composing the Solid Recovered Fuel (SRF). This classification, enabled by data pre-processing techniques, is used to estimate the Lower Heat Value (LHV) of SRF samples, building on models of the literature. The accurate and timely estimates of SRF LHVs yield significant benefits to SRF consumers.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Estimation of the Lower Heating Value of Solid Recovered Fuel Based on Swir Hyper-Spectral Images and Machine Learning.pdf
accesso aperto
Dimensione
5.4 MB
Formato
Adobe PDF
|
5.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


