We report on a universal method to measure the genuine indistinguishability of n photons - a crucial parameter that determines the accuracy of optical quantum computing. Our approach relies on a low-depth cyclic multiport interferometer with N=2n modes, leading to a quantum interference fringe whose visibility is a direct measurement of the genuine n-photon indistinguishability. We experimentally demonstrate this technique for an eight-mode integrated interferometer fabricated using femtosecond laser micromachining and four photons from a quantum dot single-photon source. We measure a four-photon indistinguishability up to 0.81±0.03. This value decreases as we intentionally alter the photon pairwise indistinguishability. The low-depth and low-loss multiport interferometer design provides an original path to evaluate the genuine indistinguishability of resource states of increasing photon number.

Quantifying n -Photon Indistinguishability with a Cyclic Integrated Interferometer

Albiero R.;Ceccarelli F.;Corrielli G.;Sciarrino F.;Osellame R.;Crespi A.
2022-01-01

Abstract

We report on a universal method to measure the genuine indistinguishability of n photons - a crucial parameter that determines the accuracy of optical quantum computing. Our approach relies on a low-depth cyclic multiport interferometer with N=2n modes, leading to a quantum interference fringe whose visibility is a direct measurement of the genuine n-photon indistinguishability. We experimentally demonstrate this technique for an eight-mode integrated interferometer fabricated using femtosecond laser micromachining and four photons from a quantum dot single-photon source. We measure a four-photon indistinguishability up to 0.81±0.03. This value decreases as we intentionally alter the photon pairwise indistinguishability. The low-depth and low-loss multiport interferometer design provides an original path to evaluate the genuine indistinguishability of resource states of increasing photon number.
2022
File in questo prodotto:
File Dimensione Formato  
PhysRevX.12.031033.pdf

accesso aperto

: Publisher’s version
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1227365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 3
social impact