Externally bonded composites have become an effective alternative for building strengthening in recent years, such as FRP (Fiber Reinforced Polymer) and FRCM (Fiber Reinforced Cementitious Matrix) can be utilized in this retrofitting strategy. For masonry structure, curved members are very common and tend to be the weakest parts of the system, meanwhile exhibiting bond behavior differently from that of flat surfaces. In this article, a simplified model consisted of an elastic composite strip and inelastic brittle substrate was adopted, based on which a fully analytical approach is developed for describing the debonding mechanism of FRP/FRCM strengthened curved surface under shear force. This approach requires few parameters, and can be realized with limited computational cost in a standard MATLAB environment, while providing a stable solution. This approach was then validated against numerical method and experimental data available in literatures, proving its effectiveness and reliability.
Closed-Form Solutions for FRP and FRCM Strengthening Brittle Substrates
Yuan Y.;Milani G.
2022-01-01
Abstract
Externally bonded composites have become an effective alternative for building strengthening in recent years, such as FRP (Fiber Reinforced Polymer) and FRCM (Fiber Reinforced Cementitious Matrix) can be utilized in this retrofitting strategy. For masonry structure, curved members are very common and tend to be the weakest parts of the system, meanwhile exhibiting bond behavior differently from that of flat surfaces. In this article, a simplified model consisted of an elastic composite strip and inelastic brittle substrate was adopted, based on which a fully analytical approach is developed for describing the debonding mechanism of FRP/FRCM strengthened curved surface under shear force. This approach requires few parameters, and can be realized with limited computational cost in a standard MATLAB environment, while providing a stable solution. This approach was then validated against numerical method and experimental data available in literatures, proving its effectiveness and reliability.File | Dimensione | Formato | |
---|---|---|---|
2022_KEM_Yuan_Mil.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.