We introduce a filtering technique for Discontinuous Galerkin approximations of hyperbolic problems. Following an approach already proposed for the Hamilton-Jacobi equations by other authors, we aim at reducing the spurious oscillations that arise in presence of discontinuities when high order spatial discretizations are employed. This goal is achieved using a filter function that keeps the high order scheme when the solution is regular and switches to a monotone low order approximation if it is not. The method has been implemented in the framework of the deal.II numerical library, whose mesh adaptation capabilities are also used to reduce the region in which the low order approximation is used. A number of numerical experiments demonstrate the potential of the proposed filtering technique.

A filtering monotonization approach for DG discretizations of hyperbolic problems

Giuseppe Orlando
2023-01-01

Abstract

We introduce a filtering technique for Discontinuous Galerkin approximations of hyperbolic problems. Following an approach already proposed for the Hamilton-Jacobi equations by other authors, we aim at reducing the spurious oscillations that arise in presence of discontinuities when high order spatial discretizations are employed. This goal is achieved using a filter function that keeps the high order scheme when the solution is regular and switches to a monotone low order approximation if it is not. The method has been implemented in the framework of the deal.II numerical library, whose mesh adaptation capabilities are also used to reduce the region in which the low order approximation is used. A number of numerical experiments demonstrate the potential of the proposed filtering technique.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1227013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact