Seismic base isolation is considered effective to reduce the vulnerability of structures and it represents an optimal retrofitting solution in terms of reliability and effectiveness. Nowadays, one of the most promising devices is the Unbonded Fiber Reinforced Elastomeric Isolator (UFREI), which is considered a low-cost device, thanks to its lightweight, easy installation, and the total absence of steel. The rubber used to assemble the devices must be vulcanized correctly to create the polymer crosslinking to be ready for structural application. All rubber mechanical properties are strongly affected by curing temperature and curing time. In this paper, a series of experimental tests and numerical analyses have been performed to investigate the influence of crosslinking on the seismic performance of UFREIs made of regenerated Ethylene Propylene Diene Monomer (EPDM) combined with glass fiber reinforcement. Two prototypes have been considered, one vulcanized correctly at 150 °C for 40 min and the other at 130 °C for 40 min. Results obtained from Finite Element (FE) cyclic shear tests analysis and nonlinear time history analyses of a preliminary structural application have shown that the devices vulcanized at 130 °C for 40 min, although having suboptimal crosslinking density, are suitable to isolate low-rise masonry buildings properly.

Seismic performance of Unbonded Fiber-Reinforced Elastomeric Isolators (UFREI) made by recycled rubber. Influence of suboptimal crosslinking

Habieb A. B.;Formisano A.;Milani G.;
2022-01-01

Abstract

Seismic base isolation is considered effective to reduce the vulnerability of structures and it represents an optimal retrofitting solution in terms of reliability and effectiveness. Nowadays, one of the most promising devices is the Unbonded Fiber Reinforced Elastomeric Isolator (UFREI), which is considered a low-cost device, thanks to its lightweight, easy installation, and the total absence of steel. The rubber used to assemble the devices must be vulcanized correctly to create the polymer crosslinking to be ready for structural application. All rubber mechanical properties are strongly affected by curing temperature and curing time. In this paper, a series of experimental tests and numerical analyses have been performed to investigate the influence of crosslinking on the seismic performance of UFREIs made of regenerated Ethylene Propylene Diene Monomer (EPDM) combined with glass fiber reinforcement. Two prototypes have been considered, one vulcanized correctly at 150 °C for 40 min and the other at 130 °C for 40 min. Results obtained from Finite Element (FE) cyclic shear tests analysis and nonlinear time history analyses of a preliminary structural application have shown that the devices vulcanized at 130 °C for 40 min, although having suboptimal crosslinking density, are suitable to isolate low-rise masonry buildings properly.
2022
Fiber-Reinforced Elastomeric Isolator (FREI)
Masonry
Nonlinear dynamic analysis
Regenerated EPDM
Seismic isolation
Vulcanization
File in questo prodotto:
File Dimensione Formato  
2022_ES.pdf

Accesso riservato

: Publisher’s version
Dimensione 10.87 MB
Formato Adobe PDF
10.87 MB Adobe PDF   Visualizza/Apri
11311-1226972_Milani.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 4
social impact