Alloys fabricated by wire-and-arc additive manufacturing (WAAM) exhibit a peculiar anisotropy in their elastic response. As shown by recent numerical investigations concerning the optimal design of WAAM-produced structural components, the printing direction remarkably affects the stiffness of the optimal layouts, as well as their shape. So far, single-plate specimens have been investigated. In this contribution, the optimal design of WAAM-produced I-beams is addressed assuming that a web plate and two flat flanges are printed and subsequently welded to assemble the structural component. A formulation of displacement-constrained topology optimization is implemented to design minimum weight specimens resorting to a simplified two-dimensional model of the I-beam. Comparisons are provided addressing solutions achieved by performing topology optimization with (i) conventional isotropic stainless steel and with (ii) WAAM-produced orthotropic stainless steel at prescribed printing orientations. Lightweight solutions arise whose specific shape depends on the selected material and the adopted printing direction.

Optimal Design of Wire-and-Arc Additively Manufactured I-Beams for Prescribed Deflection

Matteo Bruggi;
2022-01-01

Abstract

Alloys fabricated by wire-and-arc additive manufacturing (WAAM) exhibit a peculiar anisotropy in their elastic response. As shown by recent numerical investigations concerning the optimal design of WAAM-produced structural components, the printing direction remarkably affects the stiffness of the optimal layouts, as well as their shape. So far, single-plate specimens have been investigated. In this contribution, the optimal design of WAAM-produced I-beams is addressed assuming that a web plate and two flat flanges are printed and subsequently welded to assemble the structural component. A formulation of displacement-constrained topology optimization is implemented to design minimum weight specimens resorting to a simplified two-dimensional model of the I-beam. Comparisons are provided addressing solutions achieved by performing topology optimization with (i) conventional isotropic stainless steel and with (ii) WAAM-produced orthotropic stainless steel at prescribed printing orientations. Lightweight solutions arise whose specific shape depends on the selected material and the adopted printing direction.
2022
structural optimization, topology optimization, wire-and-arc additive manufacturing, I-beams, orthotropic material, additive manufacturing, 3D printing
File in questo prodotto:
File Dimensione Formato  
2022 CAMES.pdf

accesso aperto

: Publisher’s version
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact