The ability to track large-scale events as they happen is essential for understanding them and coordinating reactions in an appropriate and timely manner. This is true, for example, in emergency management and decision-making support, where the constraints on both quality and latency of the extracted information can be stringent. In some contexts, real-time and large-scale sensor data and forecasts may be available. We are exploring the hypothesis that this kind of data can be augmented with the ingestion of semistructured data sources, like social media. Social media can diffuse valuable knowledge, such as direct witness or expert opinions, while their noisy nature makes them not trivial to manage. This knowledge can be used to complement and confirm other spatio-temporal descriptions of events, highlighting previously unseen or undervalued aspects. The critical aspects of this investigation, such as event sensing, multilingualism, selection of visual evidence, and geolocation, are currently being studied as a foundation for a unified spatio-temporal representation of multi-modal descriptions. The paper presents, together with an introduction on the topics, the work done so far on this line of research, also presenting case studies relevant to the posed challenges, focusing on emergencies caused by natural disasters.

Extracting Large Scale Spatio-Temporal Descriptions from Social Media

Bono C.;Pernici B.
2022-01-01

Abstract

The ability to track large-scale events as they happen is essential for understanding them and coordinating reactions in an appropriate and timely manner. This is true, for example, in emergency management and decision-making support, where the constraints on both quality and latency of the extracted information can be stringent. In some contexts, real-time and large-scale sensor data and forecasts may be available. We are exploring the hypothesis that this kind of data can be augmented with the ingestion of semistructured data sources, like social media. Social media can diffuse valuable knowledge, such as direct witness or expert opinions, while their noisy nature makes them not trivial to manage. This knowledge can be used to complement and confirm other spatio-temporal descriptions of events, highlighting previously unseen or undervalued aspects. The critical aspects of this investigation, such as event sensing, multilingualism, selection of visual evidence, and geolocation, are currently being studied as a foundation for a unified spatio-temporal representation of multi-modal descriptions. The paper presents, together with an introduction on the topics, the work done so far on this line of research, also presenting case studies relevant to the posed challenges, focusing on emergencies caused by natural disasters.
2022
CEUR Workshop Proceedings
information mining
social media
spatio-temporal event description
File in questo prodotto:
File Dimensione Formato  
SEBD_Crowd4SDG.pdf

accesso aperto

Dimensione 5.29 MB
Formato Adobe PDF
5.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact