Recently, dynamic induction control is gaining the interest of the wind energy community as a promising strategy to increase the overall wind farm power production. Such a technique is based on a dynamic variation of the upstream rotor thrust, generated through a suitable blade pitch motion, to promote a faster wake recovery. Notwithstanding some promising results already published, the knowledge of the physical mechanism, connecting dynamic induction to the increased in-wake velocity, was not yet exploited to enhance control effectiveness. This paper, through a computational fluid dynamics procedure based on large eddy simulations coupled with actuator line models, provides a description of the working principles of this control from a fluid dynamics standpoint. The analyses show that the faster recovery is strictly connected to the ability of the blade tip vortices to roll up and sucking energy from the outer flow. Exploiting such knowledge, a novel control strategy, which improves the vortex roll up mechanism, is proposed and analyzed. The new control proved more effective than standard techniques especially for very low turbine spacing.

A CFD‐based analysis of dynamic induction techniques for wind farm control applications

Croce, Alessandro;Cacciola, Stefano;Montero Montenegro, Mariana;
2023-01-01

Abstract

Recently, dynamic induction control is gaining the interest of the wind energy community as a promising strategy to increase the overall wind farm power production. Such a technique is based on a dynamic variation of the upstream rotor thrust, generated through a suitable blade pitch motion, to promote a faster wake recovery. Notwithstanding some promising results already published, the knowledge of the physical mechanism, connecting dynamic induction to the increased in-wake velocity, was not yet exploited to enhance control effectiveness. This paper, through a computational fluid dynamics procedure based on large eddy simulations coupled with actuator line models, provides a description of the working principles of this control from a fluid dynamics standpoint. The analyses show that the faster recovery is strictly connected to the ability of the blade tip vortices to roll up and sucking energy from the outer flow. Exploiting such knowledge, a novel control strategy, which improves the vortex roll up mechanism, is proposed and analyzed. The new control proved more effective than standard techniques especially for very low turbine spacing.
2023
File in questo prodotto:
File Dimensione Formato  
CROCA_IP_02-22.pdf

accesso aperto

: Publisher’s version
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact