Aharonov-Bohm (AB) caging, a special flat-band localization mechanism, has spurred great interest in different areas of physics. AB caging can be harnessed to explore the rich and exotic physics of quantum transport in flatband systems, where geometric frustration, disorder, and correlations act in a synergetic and distinct way than that in ordinary dispersive band systems. In contrast to the ordinary Anderson localization, where disorder induces localization and prevents transport, in flat band systems disorder can induce mobility, a phenomenon dubbed inverse Anderson transition. Here, we report on the experimental realization of the AB cage using a synthetic lattice in the momentum space of ultracold atoms with tailored gauge fields, and demonstrate the geometric localization due to the flat band and the inverse Anderson transition when correlated binary disorder is added to the system. Our experimental platform in a many-body environment provides a fascinating quantum simulator where the interplay between engineered gauge fields, localization, and topological properties of flat band systems can be finely explored.

Aharonov-Bohm Caging and Inverse Anderson Transition in Ultracold Atoms

Longhi, Stefano;
2022-01-01

Abstract

Aharonov-Bohm (AB) caging, a special flat-band localization mechanism, has spurred great interest in different areas of physics. AB caging can be harnessed to explore the rich and exotic physics of quantum transport in flatband systems, where geometric frustration, disorder, and correlations act in a synergetic and distinct way than that in ordinary dispersive band systems. In contrast to the ordinary Anderson localization, where disorder induces localization and prevents transport, in flat band systems disorder can induce mobility, a phenomenon dubbed inverse Anderson transition. Here, we report on the experimental realization of the AB cage using a synthetic lattice in the momentum space of ultracold atoms with tailored gauge fields, and demonstrate the geometric localization due to the flat band and the inverse Anderson transition when correlated binary disorder is added to the system. Our experimental platform in a many-body environment provides a fascinating quantum simulator where the interplay between engineered gauge fields, localization, and topological properties of flat band systems can be finely explored.
2022
File in questo prodotto:
File Dimensione Formato  
ABCage_0922.pdf

accesso aperto

Descrizione: post-print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226251
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 11
social impact