In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.
Conformal Dirac–Einstein equations on manifolds with boundary
Borrelli W.;
2023-01-01
Abstract
In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DiracEinsteinBoundary-CVPDE2022.pdf
Accesso riservato
:
Publisher’s version
Dimensione
688.6 kB
Formato
Adobe PDF
|
688.6 kB | Adobe PDF | Visualizza/Apri |
11311-1225851_Borrelli.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
623.13 kB
Formato
Adobe PDF
|
623.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.