In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.

Conformal Dirac–Einstein equations on manifolds with boundary

Borrelli W.;
2023-01-01

Abstract

In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.
File in questo prodotto:
File Dimensione Formato  
DiracEinsteinBoundary-CVPDE2022.pdf

Accesso riservato

: Publisher’s version
Dimensione 688.6 kB
Formato Adobe PDF
688.6 kB Adobe PDF   Visualizza/Apri
11311-1225851_Borrelli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 623.13 kB
Formato Adobe PDF
623.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1225851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact