To enhance grid reliability, weak points must be monitored. One of the weaknesses is the cable joints, which are prone to failure and can cause great losses from both a technical and economical point of view. Joints failures are usually caused by impurities unintentionally added during installation that cause partial discharges (PDs). In time, these discharges erode the insulation and generate treeing up to a destructive discharge between the conductor and the ground shield. For this reason, a method for the early detection of defects in joint installation and their online monitoring is required. A previously developed sensor was improved by adapting it for this purpose. It is based on the measurement of the induced current on a conductor due to a charge variation. It was experimentally tested on an actual joint in which defects were artificially introduced. Results show that the sensor is able to detect partial discharges. Moreover, a method for PD localization was developed. The first results show a coherency between the possible defect location, numerical simulations and historical background.

An innovative sensor for cable joint monitoring and partial discharge localization

Laurano C.
2021-01-01

Abstract

To enhance grid reliability, weak points must be monitored. One of the weaknesses is the cable joints, which are prone to failure and can cause great losses from both a technical and economical point of view. Joints failures are usually caused by impurities unintentionally added during installation that cause partial discharges (PDs). In time, these discharges erode the insulation and generate treeing up to a destructive discharge between the conductor and the ground shield. For this reason, a method for the early detection of defects in joint installation and their online monitoring is required. A previously developed sensor was improved by adapting it for this purpose. It is based on the measurement of the induced current on a conductor due to a charge variation. It was experimentally tested on an actual joint in which defects were artificially introduced. Results show that the sensor is able to detect partial discharges. Moreover, a method for PD localization was developed. The first results show a coherency between the possible defect location, numerical simulations and historical background.
2021
File in questo prodotto:
File Dimensione Formato  
energies-14-04095 (4).pdf

Accesso riservato

: Publisher’s version
Dimensione 7.17 MB
Formato Adobe PDF
7.17 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1225457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 0
social impact