Tow-Based Discontinuous Composites (TBDCs) combine high manufacturability with good mechanical proper-ties. This work presents a novel 3D approach for the numerical modelling of TBDCs. The framework generates 3D orientation tensors by adding a stochastic component to the orientation tensors deterministically predicted by a process simulation. The actual TBDCs are thus idealised as Equivalent Laminates (ELs), resulting from these stochastic tensors. A physically based 3D failure criterion is presented for the prediction of failure initiation of the ELs. The consequent stiffness reduction is captured by a ply-discount method. The approach is validated for two TBDCs materials, with two different moulding conditions and different amounts of in-mould flow. The proposed approach accurately predicts the characteristic variability of these materials. As a consequence, the predicted strength was in good agreement with the experimental results of both materials tested.

A 3D finite element stochastic framework for the failure of tow-based discontinuous composites

Luca Michele Martulli;
2022-01-01

Abstract

Tow-Based Discontinuous Composites (TBDCs) combine high manufacturability with good mechanical proper-ties. This work presents a novel 3D approach for the numerical modelling of TBDCs. The framework generates 3D orientation tensors by adding a stochastic component to the orientation tensors deterministically predicted by a process simulation. The actual TBDCs are thus idealised as Equivalent Laminates (ELs), resulting from these stochastic tensors. A physically based 3D failure criterion is presented for the prediction of failure initiation of the ELs. The consequent stiffness reduction is captured by a ply-discount method. The approach is validated for two TBDCs materials, with two different moulding conditions and different amounts of in-mould flow. The proposed approach accurately predicts the characteristic variability of these materials. As a consequence, the predicted strength was in good agreement with the experimental results of both materials tested.
2022
File in questo prodotto:
File Dimensione Formato  
Strength_Model_final_clean-1-2-30_compressed.pdf

embargo fino al 08/02/2025

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri
11311-1224972_Martulli.pdf

accesso aperto

: Publisher’s version
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact