Resonant-beam accelerometers based on nanoresonators have demonstrated that reducing the size of the sensing element allows overcoming the sensitivity-bandwidth trade-off [1]. Here we report on an improvement of the performance of such sensors, through an enhancement of the wafer-level packaging (WLP). We perform a study of the different noise sources present in the system, and we show that an improvement of the vacuum level allows overcoming the thermomechanical noise of the proof mass which - so far - limited the previous generation of sensors.
Nanoresonator-based accelerometer with large bandwidth and improved bias stability
Maspero F.;Langfelder G.;
2022-01-01
Abstract
Resonant-beam accelerometers based on nanoresonators have demonstrated that reducing the size of the sensing element allows overcoming the sensitivity-bandwidth trade-off [1]. Here we report on an improvement of the performance of such sensors, through an enhancement of the wafer-level packaging (WLP). We perform a study of the different noise sources present in the system, and we show that an improvement of the vacuum level allows overcoming the thermomechanical noise of the proof mass which - so far - limited the previous generation of sensors.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
proceeding_91_Inertial2022_Nanoresonator-based_accelerometer.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


