The tris(trimethylsilyl) phosphite (TMSPi) is considered as an ideal electrolyte additive for lithium ion batteries. In this work, its positive effect as well as its failure mechanism in a LiPF6 containing electrolyte was studied by means of selected electrochemical, structural and analytical techniques. The LiNi0.5Co0.2Mn0.3O2/graphite cells with TMSPi as electrolyte additive were cycled between 2.8 and 4.6 V. Thanks to the compact cathode electrolyte interphase formed by the oxidative decomposition of TMSPi in a freshly prepared TMSPi containing electrolyte, both the discharge capacity and the cycling stability of cells were enhanced. However, our results also show that TMSPi actually reacts with LiPF6 at room temperature. TMSPi is consumed by this spontaneous reaction after aging for certain time. In addition, a part of the fluorophosphates, generated from the hydrolysis of LiPF6, is bonded to one or two TMS groups, causing a decrease in the fluorophosphate content in the CEI film. Consequently, the cycling stability of the lithium ion cells with aged TMSPi containing electrolyte deteriorates. The obtained results offer important insights into the practical application of TMSPi, which means that TMSPi can only be used as an effective additive in a freshly prepared LiPF6 containing electrolyte.

Lifetime limit of tris(trimethylsilyl) phosphite as electrolyte additive for high voltage lithium ion batteries

Li J.;
2016-01-01

Abstract

The tris(trimethylsilyl) phosphite (TMSPi) is considered as an ideal electrolyte additive for lithium ion batteries. In this work, its positive effect as well as its failure mechanism in a LiPF6 containing electrolyte was studied by means of selected electrochemical, structural and analytical techniques. The LiNi0.5Co0.2Mn0.3O2/graphite cells with TMSPi as electrolyte additive were cycled between 2.8 and 4.6 V. Thanks to the compact cathode electrolyte interphase formed by the oxidative decomposition of TMSPi in a freshly prepared TMSPi containing electrolyte, both the discharge capacity and the cycling stability of cells were enhanced. However, our results also show that TMSPi actually reacts with LiPF6 at room temperature. TMSPi is consumed by this spontaneous reaction after aging for certain time. In addition, a part of the fluorophosphates, generated from the hydrolysis of LiPF6, is bonded to one or two TMS groups, causing a decrease in the fluorophosphate content in the CEI film. Consequently, the cycling stability of the lithium ion cells with aged TMSPi containing electrolyte deteriorates. The obtained results offer important insights into the practical application of TMSPi, which means that TMSPi can only be used as an effective additive in a freshly prepared LiPF6 containing electrolyte.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 80
social impact