We study retractions associated to suitable models in compact spaces admitting a retractional skeleton and find several interesting consequences. Most importantly, we provide a new characterization of Valdivia compacta using the notion of retractional skeletons, which seems to be helpful when characterizing their subclasses. Further, we characterize Eberlein and semi-Eberlein compacta in terms of retractional skeletons and show that our new characterizations give an alternative proof of the fact that a continuous image of an Eberlein compact is Eberlein as well as new stability results for the class of semi-Eberlein compacta, solving in particular an open problem posed by Kubis and Leiderman.

Characterization of (semi-)Eberlein compacta using retractional skeletons

Somaglia, Jacopo;
2022-01-01

Abstract

We study retractions associated to suitable models in compact spaces admitting a retractional skeleton and find several interesting consequences. Most importantly, we provide a new characterization of Valdivia compacta using the notion of retractional skeletons, which seems to be helpful when characterizing their subclasses. Further, we characterize Eberlein and semi-Eberlein compacta in terms of retractional skeletons and show that our new characterizations give an alternative proof of the fact that a continuous image of an Eberlein compact is Eberlein as well as new stability results for the class of semi-Eberlein compacta, solving in particular an open problem posed by Kubis and Leiderman.
2022
File in questo prodotto:
File Dimensione Formato  
Correa, Cuth, Somaglia - Characterization of (semi-)Eberlein compacta using retractional skeletons.pdf

Accesso riservato

Dimensione 587.62 kB
Formato Adobe PDF
587.62 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact