Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
RE.PUBLIC@POLIMI pubblicazioni di ricerca del Politecnico di Milano
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
Cold atoms in space: community workshop summary and proposed road-map
Iván Alonso;Cristiano Alpigiani;Brett Altschul;Henrique Araújo;Gianluigi Arduini;Jan Arlt;Leonardo Badurina;Antun Balaž;Satvika Bandarupally;Barry C. Barish;Michele Barone;Michele Barsanti;Steven Bass;Angelo Bassi;Baptiste Battelier;Charles F. A. Baynham;Quentin Beaufils;Aleksandar Belić;Joel Bergé;Jose Bernabeu;Andrea Bertoldi;Robert Bingham;Sébastien Bize;Diego Blas;Kai Bongs;Philippe Bouyer;Carla Braitenberg;Christian Brand;Claus Braxmaier;Alexandre Bresson;Oliver Buchmueller;Dmitry Budker;Luís Bugalho;Sergey Burdin;Luigi Cacciapuoti;Simone Callegari;Xavier Calmet;Davide Calonico;Benjamin Canuel;Laurentiu-Ioan Caramete;Olivier Carraz;Donatella Cassettari;Pratik Chakraborty;Swapan Chattopadhyay;Upasna Chauhan;Xuzong Chen;Yu-Ao Chen;Maria Luisa Chiofalo;Jonathon Coleman;Robin Corgier;J. P. Cotter;A. Michael Cruise;Yanou Cui;Gavin Davies;Albert De Roeck;Marcel Demarteau;Andrei Derevianko;Marco Di Clemente;Goran S. Djordjevic;Sandro Donadi;Olivier Doré;Peter Dornan;Michael Doser;Giannis Drougakis;Jacob Dunningham;Sajan Easo;Joshua Eby;Gedminas Elertas;John Ellis;David Evans;Pandora Examilioti;Pavel Fadeev;Mattia Fanì;Farida Fassi;Marco Fattori;Michael A. Fedderke;Daniel Felea;Chen-Hao Feng;Jorge Ferreras;Robert Flack;Victor V. Flambaum;René Forsberg;Mark Fromhold;Naceur Gaaloul;Barry M. Garraway;Maria Georgousi;Andrew Geraci;Kurt Gibble;Valerie Gibson;Patrick Gill;Gian F. Giudice;Jon Goldwin;Oliver Gould;Oleg Grachov;Peter W. Graham;Dario Grasso;Paul F. Griffin;Christine Guerlin;Mustafa Gündoğan;Ratnesh K. Gupta;Martin Haehnelt;Ekim T. Hanımeli;Leonie Hawkins;Aurélien Hees;Victoria A. Henderson;Waldemar Herr;Sven Herrmann;Thomas Hird;Richard Hobson;Vincent Hock;Jason M. Hogan;Bodil Holst;Michael Holynski;Ulf Israelsson;Peter Jeglič;Philippe Jetzer;Gediminas Juzeliūnas;Rainer Kaltenbaek;Jernej F. Kamenik;Alex Kehagias;Teodora Kirova;Marton Kiss-Toth;Sebastian Koke;Shimon Kolkowitz;Georgy Kornakov;Tim Kovachy;Markus Krutzik;Mukesh Kumar;Pradeep Kumar;Claus Lämmerzahl;Greg Landsberg;Christophe Le Poncin-Lafitte;David R. Leibrandt;Thomas Lévèque;Marek Lewicki;Rui Li;Anna Lipniacka;Christian Lisdat;Mia Liu;J. L. Lopez-Gonzalez;Sina Loriani;Jorma Louko;Giuseppe Gaetano Luciano;Nathan Lundblad;Steve Maddox;M. A. Mahmoud;Azadeh Maleknejad;John March-Russell;Didier Massonnet;Christopher McCabe;Matthias Meister;Tadej Mežnaršič;Salvatore Micalizio;Federica Migliaccio;Peter Millington;Milan Milosevic;Jeremiah Mitchell;Gavin W. Morley;Jürgen Müller;Eamonn Murphy;Özgür E. Müstecaplıoğlu;Val O’Shea;Daniel K. L. Oi;Judith Olson;Debapriya Pal;Dimitris G. Papazoglou;Elizabeth Pasatembou;Mauro Paternostro;Krzysztof Pawlowski;Emanuele Pelucchi;Franck Pereira dos Santos;Achim Peters;Igor Pikovski;Apostolos Pilaftsis;Alexandra Pinto;Marco Prevedelli;Vishnupriya Puthiya-Veettil;John Quenby;Johann Rafelski;Ernst M. Rasel;Cornelis Ravensbergen;Mirko Reguzzoni;Andrea Richaud;Isabelle Riou;Markus Rothacher;Albert Roura;Andreas Ruschhaupt;Dylan O. Sabulsky;Marianna Safronova;Ippocratis D. Saltas;Leonardo Salvi;Muhammed Sameed;Pandey Saurabh;Stefan Schäffer;Stephan Schiller;Manuel Schilling;Vladimir Schkolnik;Dennis Schlippert;Piet O. Schmidt;Harald Schnatz;Jean Schneider;Ulrich Schneider;Florian Schreck;Christian Schubert;Armin Shayeghi;Nathaniel Sherrill;Ian Shipsey;Carla Signorini;Rajeev Singh;Yeshpal Singh;Constantinos Skordis;Augusto Smerzi;Carlos F. Sopuerta;Fiodor Sorrentino;Paraskevas Sphicas;Yevgeny V. Stadnik;Petruta Stefanescu;Marco G. Tarallo;Silvia Tentindo;Guglielmo M. Tino;Jonathan N. Tinsley;Vincenza Tornatore;Philipp Treutlein;Andrea Trombettoni;Yu-Dai Tsai;Philip Tuckey;Melissa A. Uchida;Tristan Valenzuela;Mathias Van Den Bossche;Ville Vaskonen;Gunjan Verma;Flavio Vetrano;Christian Vogt;Wolf von Klitzing;Pierre Waller;Reinhold Walser;Eric Wille;Jason Williams;Patrick Windpassinger;Ulrich Wittrock;Peter Wolf;Marian Woltmann;Lisa Wörner;André Xuereb;Mohamed Yahia;Efe Yazgan;Nan Yu;Nassim Zahzam;Emmanuel Zambrini Cruzeiro;Mingsheng Zhan;Xinhao Zou;Jure Zupan;Erik Zupanič
2022-01-01
Abstract
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224265
Citazioni
ND
39
16
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle regole riportate nel DM 598/2018 e allegata Tabella A. Cineca non si assume alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti. Informazioni sui dati: vengono considerati tutti i prodotti in stato definitivo. Per i prodotti indicizzati wos/scopus, l’anno di riferimento e la tipologia sono quelli riportati in banca-dati.
Per informazioni: catalogoricerca@polimi.it