Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized to drive thromboembolic events in patients implanted with MCSDs. Despite this, to date, a clinically reliable diagnostic test for assessing platelet response to stress stimuli is still missing. Here, we describe and apply the previously developed device thrombogenicity emulation methodology to the design of a microfluidic platform able to replicate shear stress profiles representative of MCSDs. The device-specific shear-mediated platelet activation is finally assessed by the platelet activity state assay, which measures real-time thrombin production, as a marker of platelet activation level. This technique can be employed to emulate the shear stress patterns of different MCSDs, such as mechanical heart valves, ventricular assist devices, and stents.

On-Chip Platelet Activation Assessment: Microfluidic Emulation of Shear Stress Profiles Induced by Mechanical Circulatory Support Devices

Mencarini T.;Bozzi S.;Redaelli A.
2022-01-01

Abstract

Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized to drive thromboembolic events in patients implanted with MCSDs. Despite this, to date, a clinically reliable diagnostic test for assessing platelet response to stress stimuli is still missing. Here, we describe and apply the previously developed device thrombogenicity emulation methodology to the design of a microfluidic platform able to replicate shear stress profiles representative of MCSDs. The device-specific shear-mediated platelet activation is finally assessed by the platelet activity state assay, which measures real-time thrombin production, as a marker of platelet activation level. This technique can be employed to emulate the shear stress patterns of different MCSDs, such as mechanical heart valves, ventricular assist devices, and stents.
2022
Methods in Molecular Biology
9781071616925
Mechanical circulatory support devices
Microfluidics
Platelet activation
Shear stress patterns
Thrombogenicity
Blood Platelets
Humans
Platelet Activation
Thromboembolism
Thrombosis
Heart-Assist Devices
Microfluidics
File in questo prodotto:
File Dimensione Formato  
2022_Book_Organ-on-a-Chip-204-215.pdf

Accesso riservato

Descrizione: Chapter
: Publisher’s version
Dimensione 232.42 kB
Formato Adobe PDF
232.42 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1223941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact