We investigate the rheo-mechanical properties of Mebiol Gel®, a thermosensitive gel-forming polymer extensively used as a medium for cellular culture, using passive microrheology made either by standard dynamic light scattering or by photon correlation imaging. In the dilute limit, Mebiol displays a Newtonian behavior with an effective viscosity that decreases with temperature, consistent with a peculiar aggregation mechanism characterized by an increase of the molecular weight with a simultaneous reduction of the aggregate size. By increasing concentration and approaching gelation, both the storage and loss moduli show a nonmonotonic dependence with temperature, with a pronounced maximum around Tm ≃ 28–30 °C, the value above which, in the dilute limit, the individual Mebiol chains are fully compacted. Such a distinctive trend of the elastic and viscous properties persists within the gel, which, therefore, becomes “softer” above Tm. Although when temperature changes are performed adiabatically, the transition from the fluid to the gel phase takes place without any apparent discontinuity, a rapid T-jump leads to the formation of a hard gel at a concentration where a low heating rate conversely yields a fluid phase. This is a visible manifestation of the nonequilibrium nature of these physical gels.
Microrheology of a thermosensitive gelling polymer for cell culture
Buzzaccaro, Stefano;Ruzzi, Vincenzo;Faleo, Tommaso;Piazza, Roberto
2022-01-01
Abstract
We investigate the rheo-mechanical properties of Mebiol Gel®, a thermosensitive gel-forming polymer extensively used as a medium for cellular culture, using passive microrheology made either by standard dynamic light scattering or by photon correlation imaging. In the dilute limit, Mebiol displays a Newtonian behavior with an effective viscosity that decreases with temperature, consistent with a peculiar aggregation mechanism characterized by an increase of the molecular weight with a simultaneous reduction of the aggregate size. By increasing concentration and approaching gelation, both the storage and loss moduli show a nonmonotonic dependence with temperature, with a pronounced maximum around Tm ≃ 28–30 °C, the value above which, in the dilute limit, the individual Mebiol chains are fully compacted. Such a distinctive trend of the elastic and viscous properties persists within the gel, which, therefore, becomes “softer” above Tm. Although when temperature changes are performed adiabatically, the transition from the fluid to the gel phase takes place without any apparent discontinuity, a rapid T-jump leads to the formation of a hard gel at a concentration where a low heating rate conversely yields a fluid phase. This is a visible manifestation of the nonequilibrium nature of these physical gels.File | Dimensione | Formato | |
---|---|---|---|
5.0086533.pdf
accesso aperto
Descrizione: Article
:
Publisher’s version
Dimensione
7.31 MB
Formato
Adobe PDF
|
7.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.