Different discretization and trust-region methods are compared for the low-thrust fuel-optimal trajectory optimization problem using successive convex programming. In particular, the differential and integral formulations of the adaptive pseudospectral Legendre–Gauss–Radau method, an arbitrary-order Legendre– Gauss–Lobatto technique based on Hermite interpolation, and a first-order-hold discretization are considered. The number of discretization points and segments is varied. Moreover, two hard-trust-region methods and a soft-trust-region strategy are compared. It is briefly discussed whether these methods, if implemented on relevant hardware, would fulfill the general requirements for onboard guidance. A perturbed cubic interpolation and the propagation of the nonlinear dynamics are used to generate initial guesses of varying quality. Interplanetary transfers to a near-Earth asteroid, Venus, and asteroid Dionysus are chosen to assess the overall performance.
Performance Assessment of Convex Low-Thrust Trajectory Optimization Methods
Hofmann, Christian;Morelli, Andrea C.;Topputo, Francesco
2023-01-01
Abstract
Different discretization and trust-region methods are compared for the low-thrust fuel-optimal trajectory optimization problem using successive convex programming. In particular, the differential and integral formulations of the adaptive pseudospectral Legendre–Gauss–Radau method, an arbitrary-order Legendre– Gauss–Lobatto technique based on Hermite interpolation, and a first-order-hold discretization are considered. The number of discretization points and segments is varied. Moreover, two hard-trust-region methods and a soft-trust-region strategy are compared. It is briefly discussed whether these methods, if implemented on relevant hardware, would fulfill the general requirements for onboard guidance. A perturbed cubic interpolation and the propagation of the nonlinear dynamics are used to generate initial guesses of varying quality. Interplanetary transfers to a near-Earth asteroid, Venus, and asteroid Dionysus are chosen to assess the overall performance.File | Dimensione | Formato | |
---|---|---|---|
HOFMC_OA_04-22.pdf
Open Access dal 29/10/2022
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri |
HOFMC02-23.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.