Choline-based deep eutectic solvents (DESs) are potential candidates to replace flammable organic solvent electrolytes in lithium-ion batteries (LIBs). The effect of the addition of a lithium salt on the structure and dynamics of the material needs to be clarified before it enters the battery. Here, the archetypical DES choline chloride:urea at 1:2 mole fraction has been added with lithium chloride at two different concentrations and the effect of the additional cation has been evaluated with respect to the non-doped system via multinuclear NMR techniques. 1H and 7Li spin-lattice relaxation times and diffusion coefficients have been measured between 298 K and 373 K and revealed a decrease in both rotational and translational mobility of the species after LiCl doping at a given temperature. Temperature dependent 35Cl linewidths reflect the viscosity increase upon LiCl addition, yet keep track of the lithium complexation. Quantitative indicators such as correlation times and activation energies give indirect insights into the intermolecular interactions of the mixtures, while lithium single-jump distance and transference number shed light into the lithium transport, being then of help in the design of future DES electrolytes.

Insights into the Effect of Lithium Doping on the Deep Eutectic Solvent Choline Chloride: Urea

Giselle de Araujo Lima e Souza;Maria Enrica Di Pietro;Franca Castiglione;Valeria Vanoli;Andrea Mele
2022-01-01

Abstract

Choline-based deep eutectic solvents (DESs) are potential candidates to replace flammable organic solvent electrolytes in lithium-ion batteries (LIBs). The effect of the addition of a lithium salt on the structure and dynamics of the material needs to be clarified before it enters the battery. Here, the archetypical DES choline chloride:urea at 1:2 mole fraction has been added with lithium chloride at two different concentrations and the effect of the additional cation has been evaluated with respect to the non-doped system via multinuclear NMR techniques. 1H and 7Li spin-lattice relaxation times and diffusion coefficients have been measured between 298 K and 373 K and revealed a decrease in both rotational and translational mobility of the species after LiCl doping at a given temperature. Temperature dependent 35Cl linewidths reflect the viscosity increase upon LiCl addition, yet keep track of the lithium complexation. Quantitative indicators such as correlation times and activation energies give indirect insights into the intermolecular interactions of the mixtures, while lithium single-jump distance and transference number shed light into the lithium transport, being then of help in the design of future DES electrolytes.
2022
deep eutectic electrolytes, nuclear magnetic resonance, lithium salt, correlation time, dynamics, lithium transport
File in questo prodotto:
File Dimensione Formato  
233_materials2022_15_7499.pdf

accesso aperto

Descrizione: printed article
: Publisher’s version
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1222750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact