Vibration transmitted through the foot can lead to vibration white feet, resulting in blanching of the toes and the disruption of blood circulation. Controlled studies identifying industrial boot characteristics effective at attenuating vibration exposure are lacking. This work focused on the evaluation of vibration transmissibility of boot midsole materials and insoles across the range 10-200 Hz at different foot locations. Questionnaires were used to evaluate the comfort of each material. The materials were less effective at attenuating vibration transmitted to the toe region of the foot than the heel. Between 10 and 20 Hz, all midsole materials reduced the average vibration transmitted to the foot. The average transmissibility at the toes above 100 Hz was larger than 1, evidencing that none of the tested material protects the worker from vibration-related risks. There was a poor correlation between the vibration transmissibility and the subjective evaluation of comfort. Future research is needed to identify materials effective for protecting both the toe and the heel regions of the foot. Specific standards for shoe testing are required as well.
Effect of the Shoe Sole on the Vibration Transmitted from the Supporting Surface to the Feet
Marco Tarabini;Alex P. Moorhead;
2021-01-01
Abstract
Vibration transmitted through the foot can lead to vibration white feet, resulting in blanching of the toes and the disruption of blood circulation. Controlled studies identifying industrial boot characteristics effective at attenuating vibration exposure are lacking. This work focused on the evaluation of vibration transmissibility of boot midsole materials and insoles across the range 10-200 Hz at different foot locations. Questionnaires were used to evaluate the comfort of each material. The materials were less effective at attenuating vibration transmitted to the toe region of the foot than the heel. Between 10 and 20 Hz, all midsole materials reduced the average vibration transmitted to the foot. The average transmissibility at the toes above 100 Hz was larger than 1, evidencing that none of the tested material protects the worker from vibration-related risks. There was a poor correlation between the vibration transmissibility and the subjective evaluation of comfort. Future research is needed to identify materials effective for protecting both the toe and the heel regions of the foot. Specific standards for shoe testing are required as well.File | Dimensione | Formato | |
---|---|---|---|
vibration-04-00041.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.96 MB
Formato
Adobe PDF
|
4.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.