A flexible problem-specific multiscale topology optimization is introduced to associate different areas of the design domain with diverse microstructures extracted from a dictionary of optimized unit cells. The generation of the dictionary is carried out by exploiting micro-SIMP with AnisoTropic mesh adaptivitY (microSIMPATY) algorithm, which promotes the design of free-form layouts. The proposed methodology is particularized in a proof-of-concept setting for the design of orthotic devices for the treatment of foot diseases. Different patient-specific settings drive the prototyping of customized insoles, which are numerically verified and successively validated in terms of mechanical performances and manufacturability.
Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices
Ferro Nicola;Perotto Simona;
2022-01-01
Abstract
A flexible problem-specific multiscale topology optimization is introduced to associate different areas of the design domain with diverse microstructures extracted from a dictionary of optimized unit cells. The generation of the dictionary is carried out by exploiting micro-SIMP with AnisoTropic mesh adaptivitY (microSIMPATY) algorithm, which promotes the design of free-form layouts. The proposed methodology is particularized in a proof-of-concept setting for the design of orthotic devices for the treatment of foot diseases. Different patient-specific settings drive the prototyping of customized insoles, which are numerically verified and successively validated in terms of mechanical performances and manufacturability.File | Dimensione | Formato | |
---|---|---|---|
11311-1221998_Ferro.pdf
accesso aperto
:
Publisher’s version
Dimensione
11.46 MB
Formato
Adobe PDF
|
11.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.