The dynamics of xenon gas, loaded in a series of 1-alkyl-3-methylimidazolium based ionic liquids, probes the formation of increasingly blurred polar/apolar nanodomains as a function of the anion type and the cation chain length. Exploiting Xe-129 NMR spectroscopy techniques, like Pulse Gradient Spin Echo (PGSE) and inversion recovery (IR), the diffusion motion and relaxation times are determined for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(n)C(1)im][TFSI]. A correlation between the ILs nano-structure and both xenon diffusivity and relaxation times, as well as chemical shifts, is outlined. Interestingly, comparison with previous results of the same properties in the homologous imidazolium chlorides and hexafluorophospate shows an opposite trend with the alkyl chain length. Classical molecular dynamics (MD) simulations are used to calculate the xenon and cation and anion diffusion coefficients in the same systems, including imidazolium cations with longer chains (n=4, 6, 8 horizontal ellipsis 20). An almost quantitative agreement with the experiments validates the MD simulations and, at the same time, provides the necessary structural and dynamic microscopic insights on the nano-segregation and diffusion of xenon in bistriflimide, chloride and hexafluorphosphate salts allowing to observe and rationalize the shaping effect of the cation in the nanostructure.

Xenon Diffusion in Ionic Liquids with Blurred Nanodomain Separation

Castiglione, Franca;Mele, Andrea
2021-01-01

Abstract

The dynamics of xenon gas, loaded in a series of 1-alkyl-3-methylimidazolium based ionic liquids, probes the formation of increasingly blurred polar/apolar nanodomains as a function of the anion type and the cation chain length. Exploiting Xe-129 NMR spectroscopy techniques, like Pulse Gradient Spin Echo (PGSE) and inversion recovery (IR), the diffusion motion and relaxation times are determined for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(n)C(1)im][TFSI]. A correlation between the ILs nano-structure and both xenon diffusivity and relaxation times, as well as chemical shifts, is outlined. Interestingly, comparison with previous results of the same properties in the homologous imidazolium chlorides and hexafluorophospate shows an opposite trend with the alkyl chain length. Classical molecular dynamics (MD) simulations are used to calculate the xenon and cation and anion diffusion coefficients in the same systems, including imidazolium cations with longer chains (n=4, 6, 8 horizontal ellipsis 20). An almost quantitative agreement with the experiments validates the MD simulations and, at the same time, provides the necessary structural and dynamic microscopic insights on the nano-segregation and diffusion of xenon in bistriflimide, chloride and hexafluorphosphate salts allowing to observe and rationalize the shaping effect of the cation in the nanostructure.
2021
diffusion
ionic liquids
molecular dynamics
nano-segregation
xenon NMR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221888
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact