We propose an efficient, accurate and robust IMEX solver for the compressible Navier-Stokes equations describing non-ideal gases with general cubic equation of state and Stiffened-Gas EOS. The method is based on an h-adaptive Discontinuous Galerkin spatial discretization and on an Additive Runge Kutta IMEX method for time discretization. It is specifically tailored for low Mach number applications and allows to simulate low Mach regimes at a significantly reduced computational cost, while maintaining full second order accuracy also for higher Mach number regimes. The method has been implemented in the framework of the deal.II numerical library, whose adaptive mesh refinement capabilities are employed to enhance efficiency. Refinement indicators appropriate for real gas phenomena have been introduced. A number of numerical experiments on classical benchmarks for compressible flows and their extension to real gases demonstrate the properties of the proposed method.

An efficient IMEX-DG solver for the compressible Navier-Stokes equations for non-ideal gases

Orlando, Giuseppe;Barbante, Paolo Francesco;Bonaventura, Luca
2022-01-01

Abstract

We propose an efficient, accurate and robust IMEX solver for the compressible Navier-Stokes equations describing non-ideal gases with general cubic equation of state and Stiffened-Gas EOS. The method is based on an h-adaptive Discontinuous Galerkin spatial discretization and on an Additive Runge Kutta IMEX method for time discretization. It is specifically tailored for low Mach number applications and allows to simulate low Mach regimes at a significantly reduced computational cost, while maintaining full second order accuracy also for higher Mach number regimes. The method has been implemented in the framework of the deal.II numerical library, whose adaptive mesh refinement capabilities are employed to enhance efficiency. Refinement indicators appropriate for real gas phenomena have been introduced. A number of numerical experiments on classical benchmarks for compressible flows and their extension to real gases demonstrate the properties of the proposed method.
2022
File in questo prodotto:
File Dimensione Formato  
orlando_bonaventura_etal_jcp_2022.pdf

accesso aperto

: Publisher’s version
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 3
social impact