Conventional storable bipropellants make use of hydrazine and its derivatives as fuels and nitrogen tetroxide as an oxidizer. In recent years, the toxicity character of these chemicals pushed the propulsion community towards “green” alternatives. Several candidates have been proposed among existing and newly developed chemicals, highlighting the need for a common and robust selection methodology. This paper aims at reviewing the most important selection criteria in the field of toxicity and discusses how to objectively define a green propellant, considering both the health and environmental hazards caused by the chemicals. Additionally, consistent figures of merit in the field of safety and handling operations and performance are proposed. In particular, operating temperatures, flammability and stability issues are discussed in the framework of physical hazards and storage requirements, while vacuum impulses, adiabatic flame temperature and sooting occurrence of the investigated couples are compared to the UDMH/NTO benchmark case. Hydrogen peroxide and nitrous oxide, and light hydrocarbons, alcohols and kerosene are selected from the open literature as promising green oxidizers and fuels, respectively. The identified methodology highlights merits and limitations of each chemical, as well as the fact that the identification of a universally best suited green couple is quite impractical. On the contrary, the characteristics of each propellant lead to a scenario of several “sub-optimal” couples, each of them opportunely fitting into a specific mission class.

Evaluating New Liquid Storable Bipropellants: Safety and Performance Assessments

Carlotti, Stefania;Maggi, Filippo
2022-01-01

Abstract

Conventional storable bipropellants make use of hydrazine and its derivatives as fuels and nitrogen tetroxide as an oxidizer. In recent years, the toxicity character of these chemicals pushed the propulsion community towards “green” alternatives. Several candidates have been proposed among existing and newly developed chemicals, highlighting the need for a common and robust selection methodology. This paper aims at reviewing the most important selection criteria in the field of toxicity and discusses how to objectively define a green propellant, considering both the health and environmental hazards caused by the chemicals. Additionally, consistent figures of merit in the field of safety and handling operations and performance are proposed. In particular, operating temperatures, flammability and stability issues are discussed in the framework of physical hazards and storage requirements, while vacuum impulses, adiabatic flame temperature and sooting occurrence of the investigated couples are compared to the UDMH/NTO benchmark case. Hydrogen peroxide and nitrous oxide, and light hydrocarbons, alcohols and kerosene are selected from the open literature as promising green oxidizers and fuels, respectively. The identified methodology highlights merits and limitations of each chemical, as well as the fact that the identification of a universally best suited green couple is quite impractical. On the contrary, the characteristics of each propellant lead to a scenario of several “sub-optimal” couples, each of them opportunely fitting into a specific mission class.
2022
green propellants; performance; storable rocket propulsion; toxicity
File in questo prodotto:
File Dimensione Formato  
CARLS01-22.pdf

accesso aperto

: Publisher’s version
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact