We present a new model of human cardiac electromechanics for the left ventricle where electrophysiology is described by a Reaction-Eikonal model and which enables an off-line resolution of the reaction model, thus entailing a big saving of computational time. Subcellular dynamics is coupled with a model of tissue mechanics, which is in turn coupled with a Windkessel model for blood circulation. Our numerical results show that the proposed model is able to provide a physiological response to changes in certain variables (end-diastolic volume, total peripheral resistance, contractility). We also show that our model is able to reproduce with high accuracy and with a considerably lower computational time the results that we would obtain if the monodomain model should be used in place of the Eikonal model.

A fast cardiac electromechanics model coupling the Eikonal and the nonlinear mechanics equations

Stella, S;Regazzoni, F;Vergara, C;Dede', L;Quarteroni, A
2022-01-01

Abstract

We present a new model of human cardiac electromechanics for the left ventricle where electrophysiology is described by a Reaction-Eikonal model and which enables an off-line resolution of the reaction model, thus entailing a big saving of computational time. Subcellular dynamics is coupled with a model of tissue mechanics, which is in turn coupled with a Windkessel model for blood circulation. Our numerical results show that the proposed model is able to provide a physiological response to changes in certain variables (end-diastolic volume, total peripheral resistance, contractility). We also show that our model is able to reproduce with high accuracy and with a considerably lower computational time the results that we would obtain if the monodomain model should be used in place of the Eikonal model.
2022
Cardiac electromechanics
Eikonal model
PV loops
numerical simulations
File in questo prodotto:
File Dimensione Formato  
paper_eikonal_mechanics.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact