EN 1992-1-2 generally limits the redistribution of bending moments from the intermediate supports to the span for continuous reinforced concrete slabs and beams in fire conditions to 15%. While higher redistributions are allowed if sufficient rotation capacity is provided, EN 1992-1-2 does not indicate how to assess the rotation capacity. However, plastic hinges caused by the rotation demand under fire conditions are highly relevant when predicting the global response and structural safety of a structure (partially) exposed to fire. Rotation capacity is specifically necessary at support regions subjected to negative bending and fire, where concrete in compression undergoes thermal degradation while the tension chord remains close to ambient temperature. This article presents a comprehensive model for the behavior of statically indeterminate members in fire conditions, enabling to estimate whether sufficient rotation capacity is provided. Material properties specified by EN 1992-1-2 are applied combined with complementary considerations concerning (i) the biaxial compressive strength of concrete, (ii) strain hardening and limitations of the ultimate strain of reinforcement, as well as (iii) tension stiffening. Tension stiffening detrimentally influences the ductility of the tension chord, limiting the rotation capacity. When comparing predictions obtained by the model to experimental results given in the literature, the correlation is good for the investigated one-way continuous slabs and beams. However, considerable uncertainty exists regarding the type of concrete aggregate used. Moreover, uncertainties concerning the behavior of concrete under compression and fire conditions are highly relevant for modeling the region of supports with rotational restraint.

Modeling statically indeterminate reinforced concrete slabs and beams under fire conditions

P. Bamonte;
2022-01-01

Abstract

EN 1992-1-2 generally limits the redistribution of bending moments from the intermediate supports to the span for continuous reinforced concrete slabs and beams in fire conditions to 15%. While higher redistributions are allowed if sufficient rotation capacity is provided, EN 1992-1-2 does not indicate how to assess the rotation capacity. However, plastic hinges caused by the rotation demand under fire conditions are highly relevant when predicting the global response and structural safety of a structure (partially) exposed to fire. Rotation capacity is specifically necessary at support regions subjected to negative bending and fire, where concrete in compression undergoes thermal degradation while the tension chord remains close to ambient temperature. This article presents a comprehensive model for the behavior of statically indeterminate members in fire conditions, enabling to estimate whether sufficient rotation capacity is provided. Material properties specified by EN 1992-1-2 are applied combined with complementary considerations concerning (i) the biaxial compressive strength of concrete, (ii) strain hardening and limitations of the ultimate strain of reinforcement, as well as (iii) tension stiffening. Tension stiffening detrimentally influences the ductility of the tension chord, limiting the rotation capacity. When comparing predictions obtained by the model to experimental results given in the literature, the correlation is good for the investigated one-way continuous slabs and beams. However, considerable uncertainty exists regarding the type of concrete aggregate used. Moreover, uncertainties concerning the behavior of concrete under compression and fire conditions are highly relevant for modeling the region of supports with rotational restraint.
2022
File in questo prodotto:
File Dimensione Formato  
Structural Concrete - 2022 - Bischof - Modeling statically indeterminate reinforced concrete slabs and beams under fire.pdf

accesso aperto

Descrizione: Versione online first
: Publisher’s version
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact