Ammonia/hydrogen mixtures are among the most promising solutions to decarbonize the transportation and energy sector. The implementation of these alternative energy carriers in practical systems requires developing suitable numerical tools, able to estimate their burning velocities as a function of both thermodynamic conditions and mixture quality. In this study, laminar flame speed correlations for ammonia/hydrogen/air mixtures are provided for high pressures (40 bar–130 bar) and elevated temperatures (720 K–1200 K), and equivalence ratios ranging from 0.4 to 1.5. Based on an extensive dataset of chemical kinetics simulations for ammonia/hydrogen blends (0-20-40-60-80-90-100 mol% of hydrogen), dedicated correlations are derived using a regression fitting. Besides these blend-specific correlations, a generalized (i.e., hydrogen-content adaptive) formulation, with hydrogen content used as additional parameter, is proposed and compared to the dedicated correlations.
Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications
Stagni A.;Mehl M.
2022-01-01
Abstract
Ammonia/hydrogen mixtures are among the most promising solutions to decarbonize the transportation and energy sector. The implementation of these alternative energy carriers in practical systems requires developing suitable numerical tools, able to estimate their burning velocities as a function of both thermodynamic conditions and mixture quality. In this study, laminar flame speed correlations for ammonia/hydrogen/air mixtures are provided for high pressures (40 bar–130 bar) and elevated temperatures (720 K–1200 K), and equivalence ratios ranging from 0.4 to 1.5. Based on an extensive dataset of chemical kinetics simulations for ammonia/hydrogen blends (0-20-40-60-80-90-100 mol% of hydrogen), dedicated correlations are derived using a regression fitting. Besides these blend-specific correlations, a generalized (i.e., hydrogen-content adaptive) formulation, with hydrogen content used as additional parameter, is proposed and compared to the dedicated correlations.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360319922025563-main_Stagni Mehl.pdf
Accesso riservato
Descrizione: articolo principale
:
Publisher’s version
Dimensione
4.3 MB
Formato
Adobe PDF
|
4.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.