The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
On the nonlinear Dirac equation on noncompact metric graphs
William Borrelli;
2021-01-01
Abstract
The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NLDgrafi-JDE.pdf
Accesso riservato
:
Publisher’s version
Dimensione
488.47 kB
Formato
Adobe PDF
|
488.47 kB | Adobe PDF | Visualizza/Apri |
11311-1221299_Borrelli.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
520.03 kB
Formato
Adobe PDF
|
520.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.