The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.

On the nonlinear Dirac equation on noncompact metric graphs

William Borrelli;
2021-01-01

Abstract

The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
2021
Bound states
Local well-posedness
Metric graphs
Nonlinear Dirac equation
Nonrelativistic limit
Perturbation method
File in questo prodotto:
File Dimensione Formato  
NLDgrafi-JDE.pdf

Accesso riservato

: Publisher’s version
Dimensione 488.47 kB
Formato Adobe PDF
488.47 kB Adobe PDF   Visualizza/Apri
11311-1221299_Borrelli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 520.03 kB
Formato Adobe PDF
520.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 11
social impact