In this paper we prove the existence of an exponentially localized stationary solution for a two-dimensional cubic Dirac equation. It appears as an effective equation in the description of nonlinear waves for some Condensed Matter (Bose–Einstein condensates) and Nonlinear Optics (optical fibers) systems. The nonlinearity is of Kerr-type, that is of the form |ψ|2ψ and thus not Lorenz-invariant. We solve compactness issues related to the critical Sobolev embedding H[Formula presented](R2,C2)↪L4(R2,C4) thanks to a particular radial ansatz. Our proof is then based on elementary dynamical systems arguments.

Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity

William Borrelli
2017-01-01

Abstract

In this paper we prove the existence of an exponentially localized stationary solution for a two-dimensional cubic Dirac equation. It appears as an effective equation in the description of nonlinear waves for some Condensed Matter (Bose–Einstein condensates) and Nonlinear Optics (optical fibers) systems. The nonlinearity is of Kerr-type, that is of the form |ψ|2ψ and thus not Lorenz-invariant. We solve compactness issues related to the critical Sobolev embedding H[Formula presented](R2,C2)↪L4(R2,C4) thanks to a particular radial ansatz. Our proof is then based on elementary dynamical systems arguments.
2017
File in questo prodotto:
File Dimensione Formato  
ShootingDirac-JDE2017.pdf

Accesso riservato

Dimensione 471.83 kB
Formato Adobe PDF
471.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact