Adhesively bonded joints are being increasingly applied in modern structures. However, manufacturing defects and particularly harsh operative conditions may cause local debonding and catastrophic failures. Structural health monitoring (SHM) and non-destructive testing (NDT) procedures are then needed to evaluate the in-service structural integrity of adhesively bonded joints. In this research, an adhesively bonded single-lap joint, both adherends of which are manufactured using a carbon fibre-reinforced polymer (CFRP) composite, is subjected to constant amplitude fatigue loading. During such a test, the integrity and damage condition of the joint is continuously monitored using acoustic emission (AE), while the test itself is periodically interrupted in order to apply micro-computed tomography (??CT) to the specimen, with the aim of investigating the real features of the developing fatigue damage. The results show that, after suitable elaboration and filtering by means of pattern recognition algorithms, acoustic emission-based monitoring allows for effective identification and characterisation of the development of fatigue damage in adhesively bonded joints.
Acoustic emission-based monitoring of fatigue damage in CFRP-CFRP adhesively bonded joints
Carboni, M;Bernasconi, A
2022-01-01
Abstract
Adhesively bonded joints are being increasingly applied in modern structures. However, manufacturing defects and particularly harsh operative conditions may cause local debonding and catastrophic failures. Structural health monitoring (SHM) and non-destructive testing (NDT) procedures are then needed to evaluate the in-service structural integrity of adhesively bonded joints. In this research, an adhesively bonded single-lap joint, both adherends of which are manufactured using a carbon fibre-reinforced polymer (CFRP) composite, is subjected to constant amplitude fatigue loading. During such a test, the integrity and damage condition of the joint is continuously monitored using acoustic emission (AE), while the test itself is periodically interrupted in order to apply micro-computed tomography (??CT) to the specimen, with the aim of investigating the real features of the developing fatigue damage. The results show that, after suitable elaboration and filtering by means of pattern recognition algorithms, acoustic emission-based monitoring allows for effective identification and characterisation of the development of fatigue damage in adhesively bonded joints.File | Dimensione | Formato | |
---|---|---|---|
Insight, Vol 64, No 7, July 2022, pp 393-397.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
PaperOpenAccess.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.