Open science has the capacity of boosting innovative solutions and knowledge development thanks to a transparent access to data shared within the research community and collaborative networks. Because of this, it has become a policy priority in various research and development strategy plans and roadmaps, but the awareness if its potential is still limited in industry. Additive manufacturing (AM) represents a field where open science initiatives may have a great impact, as large academic and industrial communities are working in the same area, enormous quantities of data are generated on a daily basis by companies and research centers, and many challenging problems still need to be solved. This article presents a case study based on an open science collaboration project between TRUMPF Laser- und Systemtechnik GmbH, one of the major AM systems developers and Politecnico di Milano. The case study relies on an open data set including in-line and in-situ signals gathered during the laser powder bed fusion of specimens of aluminum parts on an industrial machine. The signals were acquired by means of two photodiodes installed co-axially to the laser path. The specimens were designed to introduce, on purpose, anomalies in certain locations and in certain layers. The data set is specifically designed to support the development of novel in-situ monitoring methodologies for fast and robust anomaly detection while the part is being built. A layerwise statistical monitoring approach is proposed and preliminary results are presented, but the problem is open to additional research and to the exploration of novel solutions.

Open data for open science in Industry 4.0: In-situ monitoring of quality in additive manufacturing

Grasso, M;Granito, E;Colosimo, BM
2022-01-01

Abstract

Open science has the capacity of boosting innovative solutions and knowledge development thanks to a transparent access to data shared within the research community and collaborative networks. Because of this, it has become a policy priority in various research and development strategy plans and roadmaps, but the awareness if its potential is still limited in industry. Additive manufacturing (AM) represents a field where open science initiatives may have a great impact, as large academic and industrial communities are working in the same area, enormous quantities of data are generated on a daily basis by companies and research centers, and many challenging problems still need to be solved. This article presents a case study based on an open science collaboration project between TRUMPF Laser- und Systemtechnik GmbH, one of the major AM systems developers and Politecnico di Milano. The case study relies on an open data set including in-line and in-situ signals gathered during the laser powder bed fusion of specimens of aluminum parts on an industrial machine. The signals were acquired by means of two photodiodes installed co-axially to the laser path. The specimens were designed to introduce, on purpose, anomalies in certain locations and in certain layers. The data set is specifically designed to support the development of novel in-situ monitoring methodologies for fast and robust anomaly detection while the part is being built. A layerwise statistical monitoring approach is proposed and preliminary results are presented, but the problem is open to additional research and to the exploration of novel solutions.
3D printing
additive manufacturing
functional data
in-situ
industry 4.0
open data
open science
process monitoring
profile monitoring
powder bed fusion
File in questo prodotto:
File Dimensione Formato  
Open data for open science in Industry 4.0 In-situ monitoring of quality in additive manufacturing.pdf

Accesso riservato

: Publisher’s version
Dimensione 8.61 MB
Formato Adobe PDF
8.61 MB Adobe PDF   Visualizza/Apri
0Open data for open science in Industry 4.0 In-situ monitoring of quality in additive manufacturing.pdf

embargo fino al 12/08/2023

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact