OpenStreetMap (OSM) is currently an important source for building data, despite the existence of potential quality issues. Previous studies have assessed OSM data quality by comparing it with reference building data, which may not otherwise be readily available. This study assessed OSM building completeness using population data, and investigated the effectiveness of using population data for building reference data. We proposed various approaches, including type-based and regression-based approaches and their subtypes, and designed measures and methods to evaluate these approaches. Our evaluation examined four study areas in two countries, using global population data sets at three spatial resolutions (1-km, 100-m, and 30-m). Results showed that the type-based approach correctly classified approximately 80-99% of the assessed grid cells. The regression-based approach resulted in a high linear correlation (0.7 or greater) between the population counts and the referenced building count/building area size, with the strongest correlation present for the 1-km population dataset. We conclude that the use of population data as referenced building data is an effective method for the assessment of OSM building completeness. The paper concludes with the advantages and limitations of using both the type-based and the regression-based approaches.
Assessing OSM building completeness using population data
Maria Antonia Brovelli;
2022-01-01
Abstract
OpenStreetMap (OSM) is currently an important source for building data, despite the existence of potential quality issues. Previous studies have assessed OSM data quality by comparing it with reference building data, which may not otherwise be readily available. This study assessed OSM building completeness using population data, and investigated the effectiveness of using population data for building reference data. We proposed various approaches, including type-based and regression-based approaches and their subtypes, and designed measures and methods to evaluate these approaches. Our evaluation examined four study areas in two countries, using global population data sets at three spatial resolutions (1-km, 100-m, and 30-m). Results showed that the type-based approach correctly classified approximately 80-99% of the assessed grid cells. The regression-based approach resulted in a high linear correlation (0.7 or greater) between the population counts and the referenced building count/building area size, with the strongest correlation present for the 1-km population dataset. We conclude that the use of population data as referenced building data is an effective method for the assessment of OSM building completeness. The paper concludes with the advantages and limitations of using both the type-based and the regression-based approaches.File | Dimensione | Formato | |
---|---|---|---|
Assessing OSM building completeness using population data.pdf
Accesso riservato
:
Publisher’s version
Dimensione
6.04 MB
Formato
Adobe PDF
|
6.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.