Privacy-preserving deep learning with homomorphic encryption (HE) is a novel and promising research area aimed at designing deep learning solutions that operate while guaranteeing the privacy of user data. Designing privacy-preserving deep learning solutions requires one to completely rethink and redesign deep learning models and algorithms to match the severe technological and algorithmic constraints of HE. This paper provides an introduction to this complex research area as well as a methodology for designing privacy-preserving convolutional neural networks (CNNs). This methodology was applied to the design of a privacy-preserving version of the well-known LeNet-1 CNN, which was successfully operated on two benchmark datasets for image classification. Furthermore, this paper details and comments on the research challenges and software resources available for privacy-preserving deep learning with HE.

Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction

Falcetta, A;Roveri, M
2022-01-01

Abstract

Privacy-preserving deep learning with homomorphic encryption (HE) is a novel and promising research area aimed at designing deep learning solutions that operate while guaranteeing the privacy of user data. Designing privacy-preserving deep learning solutions requires one to completely rethink and redesign deep learning models and algorithms to match the severe technological and algorithmic constraints of HE. This paper provides an introduction to this complex research area as well as a methodology for designing privacy-preserving convolutional neural networks (CNNs). This methodology was applied to the design of a privacy-preserving version of the well-known LeNet-1 CNN, which was successfully operated on two benchmark datasets for image classification. Furthermore, this paper details and comments on the research challenges and software resources available for privacy-preserving deep learning with HE.
2022
File in questo prodotto:
File Dimensione Formato  
Intro_to_BFV_preprint.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 384.7 kB
Formato Adobe PDF
384.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 7
social impact