The objective of this work is to present a three-dimensional Euler-Euler finite volume poly-dispersed (multi-bin) droplet tracker for in-flight icing purposes, with an additional Lagrangian re-injection step. This step has been added to increase the accuracy of the collection efficiency prediction in multi-element 2D and 3D cases where splashed and rebounding droplets re-impinge on aft surfaces, particularly in SLD conditions. Results show local increases in accuracy of up to 4% in a 3D single element case and up to 100% on flaps in 2D multi-element airfoil cases. The Lagrangian re-impingement correction improves significantly when using multi-bin, while also being more efficient than the standard approaches. Lastly, a simple bin to bin initialization strategy allows for up to 65% less computational time in the Eulerian droplet tracking step when running multi-bin simulations.

Poly-Dispersed Eulerian-Lagrangian Particle Tracking for In-Flight Icing Applications

Sirianni G. A. G.;Bellosta T.;Re B.;Guardone A.
2022-01-01

Abstract

The objective of this work is to present a three-dimensional Euler-Euler finite volume poly-dispersed (multi-bin) droplet tracker for in-flight icing purposes, with an additional Lagrangian re-injection step. This step has been added to increase the accuracy of the collection efficiency prediction in multi-element 2D and 3D cases where splashed and rebounding droplets re-impinge on aft surfaces, particularly in SLD conditions. Results show local increases in accuracy of up to 4% in a 3D single element case and up to 100% on flaps in 2D multi-element airfoil cases. The Lagrangian re-impingement correction improves significantly when using multi-bin, while also being more efficient than the standard approaches. Lastly, a simple bin to bin initialization strategy allows for up to 65% less computational time in the Eulerian droplet tracking step when running multi-bin simulations.
2022
AIAA Aviation 2022 Forum
978-1-62410-635-4
File in questo prodotto:
File Dimensione Formato  
SIRIG_OA_01-22.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
SIRIG01-22.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact