Question Difficulty Estimation from Text (QDET) is the application of Natural Language Processing techniques to the estimation of a value, either numerical or categorical, which represents the difficulty of questions in educational settings. We give an introduction to the field, build a taxonomy based on question characteristics, and present the various approaches that have been proposed in recent years, outlining opportunities for further research. This survey provides an introduction for researchers and practitioners into the domain of question difficulty estimation from text and acts as a point of reference about recent research in this topic to date.

A survey on recent approaches to question difficulty estimation from text

Benedetto, Luca;Cremonesi, Paolo;Cappelli, Andrea;Giussani, Andrea;Turrin, Roberto
2022-01-01

Abstract

Question Difficulty Estimation from Text (QDET) is the application of Natural Language Processing techniques to the estimation of a value, either numerical or categorical, which represents the difficulty of questions in educational settings. We give an introduction to the field, build a taxonomy based on question characteristics, and present the various approaches that have been proposed in recent years, outlining opportunities for further research. This survey provides an introduction for researchers and practitioners into the domain of question difficulty estimation from text and acts as a point of reference about recent research in this topic to date.
2022
File in questo prodotto:
File Dimensione Formato  
11311-1220276_Benedetto.pdf

accesso aperto

: Publisher’s version
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1220276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 14
social impact