Digitalization is one of the main grounds for discussion in the textile manufacturing industry. As in other creative fields, digitalization in textile design has brought craftsmanship together with work using digital tools and mechanical processes to creatively embed advanced knowledge in structural design and this dualism is even stronger in the field of knitwear design. For years, knitting technologies have been considered far from creativity and entirely delegated to the expertise of technicians, and design education has often focused on fostering artistic expression by teaching highly creative manual/mechanical processes. In the ongoing shift towards digitalization and the challenges of Industry 4.0, research and education in knitting design must redefine the programming of industrial machines as a tool for designers to push their experimental creativity together with their technical knowledge. This article reports an investigation made by the authors in the two different contexts of the School of Design of Politecnico di Milano and of the Swedish School of Textile in Borås. Using the method of constructive alignment (Biggs, J. B. & Tang, C. S., 2011), the investigation set up a comparison of two practice-based methods for training designers in programming industrial knitting machines. The authors mapped the teaching, learning activities and expected learning outcomes specific for each course and analysed quintessential aspects that occur in the learning process in the transition from manual to digital tools. The research had the aim of understanding what kind of knowledge should be transferred, in which way and with which purpose, to make programming an integral and effective part of the learning process for knit designers. The data collected have been used to highlight similarities and differences between the two programmes, identify impactful items and open future research that could foster improvements with shared solutions.

The role of teaching advanced technological knowledge to enhance experimental creativity in knit design.

M Motta
2022-01-01

Abstract

Digitalization is one of the main grounds for discussion in the textile manufacturing industry. As in other creative fields, digitalization in textile design has brought craftsmanship together with work using digital tools and mechanical processes to creatively embed advanced knowledge in structural design and this dualism is even stronger in the field of knitwear design. For years, knitting technologies have been considered far from creativity and entirely delegated to the expertise of technicians, and design education has often focused on fostering artistic expression by teaching highly creative manual/mechanical processes. In the ongoing shift towards digitalization and the challenges of Industry 4.0, research and education in knitting design must redefine the programming of industrial machines as a tool for designers to push their experimental creativity together with their technical knowledge. This article reports an investigation made by the authors in the two different contexts of the School of Design of Politecnico di Milano and of the Swedish School of Textile in Borås. Using the method of constructive alignment (Biggs, J. B. & Tang, C. S., 2011), the investigation set up a comparison of two practice-based methods for training designers in programming industrial knitting machines. The authors mapped the teaching, learning activities and expected learning outcomes specific for each course and analysed quintessential aspects that occur in the learning process in the transition from manual to digital tools. The research had the aim of understanding what kind of knowledge should be transferred, in which way and with which purpose, to make programming an integral and effective part of the learning process for knit designers. The data collected have been used to highlight similarities and differences between the two programmes, identify impactful items and open future research that could foster improvements with shared solutions.
2022
Human Factors for Apparel and Textile Engineering
978-1-958651-08-7
knit design, creative process, digital technologies
File in questo prodotto:
File Dimensione Formato  
978-1-958651-08-7_0.pdf

accesso aperto

Descrizione: pdf open access
: Publisher’s version
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1218983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact