The open-loop transfer function provides valuable insights into the key dynamic characteristics of DC/DC voltage regulators, such as stability, line and load transient response. Nonetheless, the experimental measurement of the loop gain in a monolithically integrated regulator is not straightforward or not even possible by using standard techniques, especially when complex control strategies are adopted. To overcome this issue, we propose an integrated loop-gain measurement circuit specifically designed for DC/DC converters with time-based control. The measurement circuit includes a transconductor, two delay lines, and a simple logic that can be easily integrated in a small silicon area. Moreover, the circuit can be easily disabled during normal operation to minimize its impact on the regulator performance. The proposed circuit was fabricated in a 180nm CMOS technology, occupying a silicon area of 0.027mm(2). Experimental validation was performed by embedding the circuit into a boost converter with time-based control.
Integrated Loop-Gain Measurement Circuit for DC/DC Boost Converters with Time-Based Control
Leoncini, Mauro;Melillo, Paolo;Levantino, Salvatore;Ghioni, Massimo
2022-01-01
Abstract
The open-loop transfer function provides valuable insights into the key dynamic characteristics of DC/DC voltage regulators, such as stability, line and load transient response. Nonetheless, the experimental measurement of the loop gain in a monolithically integrated regulator is not straightforward or not even possible by using standard techniques, especially when complex control strategies are adopted. To overcome this issue, we propose an integrated loop-gain measurement circuit specifically designed for DC/DC converters with time-based control. The measurement circuit includes a transconductor, two delay lines, and a simple logic that can be easily integrated in a small silicon area. Moreover, the circuit can be easily disabled during normal operation to minimize its impact on the regulator performance. The proposed circuit was fabricated in a 180nm CMOS technology, occupying a silicon area of 0.027mm(2). Experimental validation was performed by embedding the circuit into a boost converter with time-based control.File | Dimensione | Formato | |
---|---|---|---|
Integrated_Loop-Gain_Measurement_Circuit_for_DC_DC_Boost_Converters_with_Time-Based_Control.pdf
Accesso riservato
Descrizione: paper
:
Publisher’s version
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.