In this work, aqueous solutions of two prototypical ionic liquids (ILs), [BMIM][BF4] and [BMIM][TfO], were investigated by UV Raman spectroscopy and small-angle neutron scattering (SANS) in the water-rich domain, where strong heterogeneities at mesoscopic length scales (microheterogeneity) were expected. Analyzing Raman data by a differential method, the solute-correlated (SC) spectrum was extracted from the OH stretching profiles, emphasizing specific hydration features of the anions. SC-UV Raman spectra pointed out the molecular structuring of the interfacial water in these microheterogeneous IL/water mixtures, in which IL aggregates coexist with bulk water domains. The organization of the interfacial water differs for the [BMIM][BF4] and [BMIM][TfO] solutions, being affected by specific anion−water interactions. In particular, in the case of [BMIM][BF4], which forms weaker H-bonds with water, the aggregation properties clearly depend on concentration, as reflected by local changes in the interfacial water. On the other hand, stronger water−anion hydrogen bonds and more persistent hydration layers were observed for [BMIM][TfO], which likely prevent changes in IL aggregates. The modeling of SANS profiles, extended to [BPy][BF4] and [BPy][TfO], evidences the occurrence of significant concentration fluctuations for all of the systems: this appears as a rather general phenomenon that can be ascribed to the presence of IL aggregation, mainly induced by (cation-driven) hydrophobic interactions. Nevertheless, larger concentration fluctuations were observed for [BMIM][BF4], suggesting that anion−water interactions are relevant in modulating the microheterogeneity of the mixture.

Interfacial Water and Micro-heterogeneity in Aqueous Solutions of Ionic Liquids

Andrea Mele
2022-01-01

Abstract

In this work, aqueous solutions of two prototypical ionic liquids (ILs), [BMIM][BF4] and [BMIM][TfO], were investigated by UV Raman spectroscopy and small-angle neutron scattering (SANS) in the water-rich domain, where strong heterogeneities at mesoscopic length scales (microheterogeneity) were expected. Analyzing Raman data by a differential method, the solute-correlated (SC) spectrum was extracted from the OH stretching profiles, emphasizing specific hydration features of the anions. SC-UV Raman spectra pointed out the molecular structuring of the interfacial water in these microheterogeneous IL/water mixtures, in which IL aggregates coexist with bulk water domains. The organization of the interfacial water differs for the [BMIM][BF4] and [BMIM][TfO] solutions, being affected by specific anion−water interactions. In particular, in the case of [BMIM][BF4], which forms weaker H-bonds with water, the aggregation properties clearly depend on concentration, as reflected by local changes in the interfacial water. On the other hand, stronger water−anion hydrogen bonds and more persistent hydration layers were observed for [BMIM][TfO], which likely prevent changes in IL aggregates. The modeling of SANS profiles, extended to [BPy][BF4] and [BPy][TfO], evidences the occurrence of significant concentration fluctuations for all of the systems: this appears as a rather general phenomenon that can be ascribed to the presence of IL aggregation, mainly induced by (cation-driven) hydrophobic interactions. Nevertheless, larger concentration fluctuations were observed for [BMIM][BF4], suggesting that anion−water interactions are relevant in modulating the microheterogeneity of the mixture.
2022
ionic liquids, neutron scattering, Raman spectroscopy, microheterogeneity
File in questo prodotto:
File Dimensione Formato  
Paper SANS+Raman_28_12_21.pdf

accesso aperto

Descrizione: pre print
: Pre-Print (o Pre-Refereeing)
Dimensione 908.3 kB
Formato Adobe PDF
908.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1218084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact