Particle dampers’ dissipative characteristics can be difficult to predict because of their highly non-linear behavior. The application of such devices in deformable vibrating systems can require extensive experimental and numerical analyses; therefore, improving the efficiency when simulating particle dampers would help in this regard. Two techniques often proposed to speed up the simulation, namely the adoption of a simplified frictional moment and the reduction of the contact stiffness, are considered; their effect on the simulation run-time, on the ability of the particle bed to sustain shear deformation, and on the prediction of the dissipation performance is investigated for different numerical case studies. The reduction in contact stiffness is studied in relation to the maximum overlap between particles, as well as the contacts’ duration. These numerical simulations are carried out over a wide range of motion regimes, frequencies, and amplitude levels. Experimental results are considered as well. All the simulations are performed using a GPU-based discrete element simulation tool coupled with the multi-body code MBDyn; the results and execution time are compared with those of other solvers.

Efficient Discrete Element Modeling of Particle Dampers

Biondani, Fabio;Morandini, Marco;Ghiringhelli, Gian Luca;
2022

Abstract

Particle dampers’ dissipative characteristics can be difficult to predict because of their highly non-linear behavior. The application of such devices in deformable vibrating systems can require extensive experimental and numerical analyses; therefore, improving the efficiency when simulating particle dampers would help in this regard. Two techniques often proposed to speed up the simulation, namely the adoption of a simplified frictional moment and the reduction of the contact stiffness, are considered; their effect on the simulation run-time, on the ability of the particle bed to sustain shear deformation, and on the prediction of the dissipation performance is investigated for different numerical case studies. The reduction in contact stiffness is studied in relation to the maximum overlap between particles, as well as the contacts’ duration. These numerical simulations are carried out over a wide range of motion regimes, frequencies, and amplitude levels. Experimental results are considered as well. All the simulations are performed using a GPU-based discrete element simulation tool coupled with the multi-body code MBDyn; the results and execution time are compared with those of other solvers.
particle damping
discrete element method
GPU computing
energy dissipation
contact stiffness
Clean Sky 2 Joint Undertaking
European Union (EU)
Horizon 2020
Engine Mount System for Ultra High Pass Engine - EMS UHPE
File in questo prodotto:
File Dimensione Formato  
BIONF01-22.pdf

accesso aperto

: Publisher’s version
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1218060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact