Introduction: Electronic pressure-sensitive walkways are commonly available solutions to quantitatively assess gait parameters for clinical and research purposes. Many studies have evaluated their measurement properties in different conditions with variable findings. In order to be informed about the current evidence of their reliability for optimal clinical and scientific decision making, this systematic review provided a quantitative synthesis of the test-retest reliability and minimal detectable change of the captured gait parameters across different test conditions (single and cognitive dual-task conditions) and population groups. Evidence acquisition: A literature search was conducted in PubMed, Embase, and Scopus until November 2021 to identify articles that examined the test-retest reliability properties of the gait parameters captured by pressure-sensitive walkways (gait speed, cadence, stride length and time, double support time, base of support) in adult healthy individuals or patients. The methodological quality was rated using the "Consensus-based standards for the selection of health measurement instruments" checklist. Data were meta-analyzed on intraclass correlation coefficient to examine the test-retest relative reliability. Quantitative synthesis was performed for absolute reliability, examined by the weighted average of minimal detectable change values. Evidence synthesis: A total of 44 studies were included in this systematic review. The methodological quality was adequate in half of the included studies. The main finding was that pressure-sensitive walkways are reliable tools for objective assessment of spatial and temporal gait parameters both in singleand cognitive dual-task conditions. Despite few exceptions, the review identified intraclass correlation coefficient higher than 0.75 and minimal detectable change lower than 30%, demonstrating satisfactory relative and absolute reliability in all examined populations (healthy adults, elderly, patients with cognitive impairment, spinocerebellar ataxia type 14, Huntington's disease, multiple sclerosis, Parkinson's disease, rheumatoid arthritis, spinal cord injury, stroke or vestibular dysfunction). Conclusions: Current evidence suggested that, despite different populations and testing protocols used in the included studies, the test-retest reliability of the examined gait parameters was acceptable under single and cognitive dual-task conditions. Further high-quality studies with powered sample sizes are needed to examine the reliability findings of the currently understudied and unexplored pathologies and test conditions.

The reliability of gait parameters captured via instrumented walkways: a systematic review and meta-analysis

Parati, Monica;Ambrosini, Emilia;Ferrante, Simona
2022-01-01

Abstract

Introduction: Electronic pressure-sensitive walkways are commonly available solutions to quantitatively assess gait parameters for clinical and research purposes. Many studies have evaluated their measurement properties in different conditions with variable findings. In order to be informed about the current evidence of their reliability for optimal clinical and scientific decision making, this systematic review provided a quantitative synthesis of the test-retest reliability and minimal detectable change of the captured gait parameters across different test conditions (single and cognitive dual-task conditions) and population groups. Evidence acquisition: A literature search was conducted in PubMed, Embase, and Scopus until November 2021 to identify articles that examined the test-retest reliability properties of the gait parameters captured by pressure-sensitive walkways (gait speed, cadence, stride length and time, double support time, base of support) in adult healthy individuals or patients. The methodological quality was rated using the "Consensus-based standards for the selection of health measurement instruments" checklist. Data were meta-analyzed on intraclass correlation coefficient to examine the test-retest relative reliability. Quantitative synthesis was performed for absolute reliability, examined by the weighted average of minimal detectable change values. Evidence synthesis: A total of 44 studies were included in this systematic review. The methodological quality was adequate in half of the included studies. The main finding was that pressure-sensitive walkways are reliable tools for objective assessment of spatial and temporal gait parameters both in singleand cognitive dual-task conditions. Despite few exceptions, the review identified intraclass correlation coefficient higher than 0.75 and minimal detectable change lower than 30%, demonstrating satisfactory relative and absolute reliability in all examined populations (healthy adults, elderly, patients with cognitive impairment, spinocerebellar ataxia type 14, Huntington's disease, multiple sclerosis, Parkinson's disease, rheumatoid arthritis, spinal cord injury, stroke or vestibular dysfunction). Conclusions: Current evidence suggested that, despite different populations and testing protocols used in the included studies, the test-retest reliability of the examined gait parameters was acceptable under single and cognitive dual-task conditions. Further high-quality studies with powered sample sizes are needed to examine the reliability findings of the currently understudied and unexplored pathologies and test conditions.
2022
gait analysis
rehabilitation
stroke
reliability
File in questo prodotto:
File Dimensione Formato  
Parati 2022.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1217680
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact