Lung cancer diagnosis involves different screening exams concluding with a biopsy. Although it is among the most diagnosed, lung cancer is characterized by a very high mortality rate caused by its aggressive nature. Though a swift identification is essential, the current procedure requires multiple physicians to visually inspect many images, leading to a lengthy analysis time. In this context, to support the radiologists and automate such repetitive processes, Deep Learning (DL) techniques have found their way as helpful diagnosis support tools. With this work, we propose an end-to-end multi-step framework for lung cancer localization within routinely acquired Computed Tomography images. The framework is composed of a first step of lung segmentation, followed by a patch classification model, and ends with a mass segmentation module. Lung segmentation reaches an accuracy of 99.6% even when considerable damages are present, while the patch classifier achieves a sensitivity of 85.48% in identifying patches containing masses. Finally, we evaluate the end-to-end framework for mass segmentation, which proves to be the most challenging task reaching a mean Dice coefficient of 68.56%.

Lung Cancer Identification via Deep Learning: A Multi-Stage Workflow

Canavesi I.;D'Arnese E.;Caramaschi S.;Santambrogio M. D.
2022-01-01

Abstract

Lung cancer diagnosis involves different screening exams concluding with a biopsy. Although it is among the most diagnosed, lung cancer is characterized by a very high mortality rate caused by its aggressive nature. Though a swift identification is essential, the current procedure requires multiple physicians to visually inspect many images, leading to a lengthy analysis time. In this context, to support the radiologists and automate such repetitive processes, Deep Learning (DL) techniques have found their way as helpful diagnosis support tools. With this work, we propose an end-to-end multi-step framework for lung cancer localization within routinely acquired Computed Tomography images. The framework is composed of a first step of lung segmentation, followed by a patch classification model, and ends with a mass segmentation module. Lung segmentation reaches an accuracy of 99.6% even when considerable damages are present, while the patch classifier achieves a sensitivity of 85.48% in identifying patches containing masses. Finally, we evaluate the end-to-end framework for mass segmentation, which proves to be the most challenging task reaching a mean Dice coefficient of 68.56%.
2022
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022)
978-1-6654-2923-8
Biomedical Image Processing
Deep Learning
Lung Cancer
File in questo prodotto:
File Dimensione Formato  
Lung_Cancer_Identification_via_Deep_Learning_A_Multi-Stage_Workflow.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1217142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact